sonyps4.ru

Что такое качество программного обеспечения. Стандарты в области разработки программного обеспечения

1

В работе приведена краткая информация по стандарту ISO 9126 «Информационная технология. Оценка программного продукта. Характеристики качества и руководство по их применению». Поскольку спектр программных комплексов широк, то была выбрана группа систем для создания тестов. Для оценки качества этой группы программ приведено краткое описание некоторых программных комплексов. Основываясь на особенностях данной группы программных средств, был составлен перечень характеристик, определяющих качество программ. Согласно рекомендациям стандарта ISO 9126, было проведено исследование характеристик выбранной группы программных средств. В качестве метода определения значений показателей качества использовалась регистрация характеристик (есть или нет) и экспертная оценка. Таким образом, предложена методика оценки качества одного из видов программных средств согласно стандарту ISO 9126.

стандарт

характеристика

оценка качества

программные средства

1. Баранюк В.В., Тютюнников Н.Н. Оценка качества электронных словарей и энциклопедий // Программная инженерия. – 2012. – № 8. – С. 29–37.

2. Гличев А.В., Панов В.П., Азгальдов Г.Г. Что такое качество? – М.: Экономика, 1968. 135 с.

3. Горбаченко И.М. Программное обеспечение для создания автоматизированных обучающих систем // Проблемы информатизации региона. ПИР-2005: материалы девятой научно-практической конференции (Красноярск, 11–12 окт. 2005 г.). – Красноярск: ИПЦ КГТУ, 2005. – т. 2. – С. 132–135.

4. Горбаченко И.М. Сравнительный анализ существующих систем тестирования // Тестирование в сфере образования: проблемы и перспективы развития: материалы Всероссийской научно-практической конференции. (Красноярск, 19-21 мая 2008 г.) / отв. ред. Г.П. Карлов. – Красноярск: СибГТУ, 2008. – С. 177–183.

5. Липаев В.В. Проблемы обеспечения качества сложных программных средств [Электронный ресурс]. – Режим доступа: http://quality.eup.ru/MATERIALY4/poksps.htm (дата обращения 9.04.2013).

6. Лозинин А.И., Шубинский И.Б. Характеристики качества программного обеспечения и методы их оценки [Электронный ресурс]. – Режим доступа: http://www.ibtrans.ru/Estimating %20methods.pdf (дата обращения 12.03.2013).

На современных компьютерах установлено множество разнообразного программного обеспечения (ПО). И хочется, чтобы оно было качественное, работоспособное, работало без сбоев и т.д. Рассмотрим определение «качества ПО» (Software Quality) в контексте международных стандартов:

1) качество программного обеспечения - это степень, в которой программное обеспечение обладает требуемой комбинацией свойств. ;

2) качество программного средства - совокупность свойств программного средства (ПС), которые обусловливают его пригодность удовлетворять заданные или подразумеваемые потребности в соответствии с его назначением [ГОСТ 28806-90 «Качество программных средств. Термины и определения»].

Целью данной работы является разработка методики применения требований стандарта ISO 9126 к оценке качества одного из видов программных средств - систем создания тестов.

Стандарт ISO 9126

На данный момент наиболее распространена и используется многоуровневая модель качества программного обеспечения, представленная в наборе стандартов ISO 9126. Основой регламентирования показателей качества систем является международный стандарт ISO 9126 «Информационная технология. Оценка программного продукта. Характеристики качества и руководство по их применению». В этом стандарте описано многоуровневое распределение характеристик ПО. На верхнем уровне выделено 6 основных характеристик качества ПО, каждую из которых определяют набором атрибутов, имеющих соответствующие метрики для последующей оценки (рисунок) .

Согласно этой модели, функциональность программного средства (functionality) - совокупность свойств ПС, определяемая наличием и конкретными особенностями набора функций, способных удовлетворять заданные или подразумеваемые потребности качества наряду с ее надежностью как технической системы. Надежность (Reliability) - способность ПО выполнять требуемые задачи в обозначенных условиях на протяжении заданного промежутка времени или указанное количество операций. Удобство использования программного средства (usability) - совокупность свойств ПС, характеризующая усилия, необходимые для его использования, и оценку результатов его использования заданным кругом пользователей ПС. Эффективность (Efficiency) - способность ПО обеспечивать требуемый уровень производительности в соответствии с выделенными ресурсами, временем и другими обозначенными условиями. Удобство сопровождения (Maintainability) - легкость, с которой ПО может анализироваться, тестироваться, изменяться для исправления дефектов, для реализации новых требований, для облегчения дальнейшего обслуживания и адаптироваться к именующемуся окружению. Портативность (Portability) - совокупность свойств ПС, характеризующая приспособленность для переноса из одной среды функционирования в другие.

Модель качества программного обеспечения (ISO 9126)

Программное обеспечение для создания систем тестирования

При современном уровне развития компьютерной техники и систем обмена информацией все чаще при обучении применяется тестирование, которое применяется в качестве инструмента вузовского мониторинга и прогнозирования. Мониторинг как контролирующая и диагностическая система обеспечивает преподавателя объективной и оперативной информацией об уровне усвоения студентами обязательного учебного материала, а администрацию об эффективности управления. Система компьютерного тестирования - это универсальный инструмент для определения обученности студентов на всех уровнях образовательного процесса.

Создание тестов на высоком методологическом уровне требует от преподавателя разработки четкой понятийно-терминологической структуры курса, т.е. таблицы проверяемых в тестах понятий и тезисов, структурированных по темам и разделам программы учебной дисциплины.

Система компьютерного тестирования является неотъемлемой составляющей для перспективного развития дистанционных форм обучения.

В настоящее время все чаще стали появляться готовые средства для разработки обучающих программ . Причем эти разработки не только зарубежных (для примера - Adobe Acrobat, Macromedia Authorware, ToolBook II, Quest и другие), но и отечественные (например, HyperMethod, «Доцент», «Прометей», сетевая оболочка «ОРОКС», КАДИС). Приведем краткую характеристику некоторых из них.

Одина из систем для проведения тестирования «Конструктор тестов» - универсальная система проверки знаний (сайт системы - http://www.keepsoft.ru/simulator.htm). Программа поддерживает пять типов вопросов: закрытые (на выбор одного или нескольких ответов), открытый (ввод ответа), на соответствие и на упорядочивание. Это позволяет проводить любые тесты. В тестах имеется возможность использовать музыку, звуки, изображения и видеоролики. Любые данные можно распечатать на принтере. На одном компьютере тестирование независимо могут проходить несколько человек, входя в программу под своими именами.

Следующий пакет - система тестирования INDIGO (сайт - http://indigotech.ru/). В этой системе также можно создавать тестовые задания 5 типов. Но кроме этого особенностью конструктора тестов INDIGO является поддержка многоуровневой иерархической группировки вопросов тестов по заданиям, темам и т.д. Ведь если вопросы теста отображаются в одном линейном списке, то возникают сложности с навигацией и пониманием того, какой вопрос к чему относится. В этой системе имеется возможность задания для каждой группы индивидуальных настроек (в особенности, порядка выдачи вложенных элементов или их случайной выборки).

Следующий рассматриваемый пакет - VeralTest - комплекс программ для создания тестовых задний и для организации многопользовательского компьютерного тестирования (сайт - http://veralsoft.com/veraltest.shtml). В этой системе могут быть созданы следующие типы тестовых задний - закрытый (выбор одного ответа и выбор нескольких ответов), ввод текстового ответа, ввод числового ответа, вопросы на соответствие.

Пакет программ VeralTest представлен в двух редакциях:

VeralTest Express. Позволяет создавать автономные самозапускамые тесты (exe тесты), которые могут быть запущены на любом компьютере без предварительной установки и настройки. Состав пакета VeraTest Express: редактор тестов TestEditor и программа для просмотра результатов тестирования ResultViewer.

VeralTest Professional. Поддерживает все функции express редакции. Кроме этого, в состав пакета входит сервер тестирования (программа TestServer), позволяющий организовать тестирование в компьютерном классе или локальной сети предприятия. При этом доступ к тестам осуществляется через веб-браузер (например, Internet Explorer, Google Chrome, Mozila Firefox). Еще эта редакция включает в себя программу администрирования TestAdmin, при помощи которой можно регистрировать пользователей, объединять их в группы, назначать тесты для выполнения пользователями, просматривать и распечатывать результаты тестирования.

Кроме указанных программных комплексов, существует множество других систем . С некоторыми из них можно познакомиться на сайте - http://edu.of.ru/volsch31/default.asp?ob_no = 2300.

В таблице приведен перечень характеристик некоторых средств создания систем тестирования и проведено их сравнение.

Применительно к данному виду программных средств очень тяжело рассматривать эффективность, т.к. велико влияние человека (преподавателя, создающего тесты, и студента, отвечающего на тест). Если же эффективность рассматривать с точки зрения быстроты проверки тестов, то этот показатель в большей степени зависит от скорости передачи информации по компьютерной сети, от числа тестовых заданий.

Как видно из приведенного выше описания и сравнения возможностей, рассмотренные программные продукты можно применять для тестирования по разным дисциплинам, причем как по гуманитарным, так и по техническим (за счет возможности работы с текстом, графикой, музыкой, мультимедиа).

Если за наличие каждого признака ставить 1 балл, то получается что из рассматриваемых систем MOODLE получила 22 балла, UniTest System - 15, «Конструктор тестов» - 11, INDIGO - 14, VeralTest - 12 (версия Express) и 16 (версия Professional).

При учете наличия системы настроек порядка подачи тестовых задний, систему взаимодействия по компьютерной сети и другие факторы, то наиболее расширенными возможностями обладают системы MOODLE, INDIGO и VeralTest. Именно эти системы наиболее часто используют на практике при тестировании студентов.

Заключение

Оценка показателей качества программных средств может осуществляться различными методами и способами . Представленная в статье методика оценки качества, основанная на принципах стандарта ISO 9126, позволяет:

Оценить качество программных комплексов, используя различные системы показателей качества;

Закладывать качество программ при разработке технического задания и контролировать его на всех этапах жизненного цикла, т.е. оценивать минимальный уровень качества при неполной информации о программных системах, который достигнут при уже полученных значениях показателей качества;

Сравнительные характеристики некоторых средств для создания обучающих курсов

Название

«Конструктор тестов»

VeralTest Express / Professional

Надежность

Завершенность (вероятность отказа)

Низкая / Высокая

Устойчивость к отказам (работоспособность)

Восстанавливаемость

Наличие системы резервного копирования

Сохранение тестов в отдельном файле

Удобство использования

Легкость освоения

Наличие методических указаний по изучению

Понятность

Наличие готовых шаблонов тестов

+ (на англ.)

Наличие развернутой справочной системы

Удобство и простота использования

Наличие меню (кнопки) создания теста

Работа с графикой

Работа со звуком

Создание кнопок управления

Возможность автоматического оценивания ответа

Задание сроков ответов на вопросы

Наличие функции определения времени ответа на вопросы

Ограничение времени ответ на каждый вопрос

Ограничение общего времени прохождения теста

Возможность деления вопросов по уровням сложности

Функциональность

Наличие средств защиты (например, шифрование тестов)

Возможность работы локальной компьютерной сети

Работа в сети Internet

Удобство сопровождения

Наличие службы технической поддержки

Наличие отдельных модулей

Наличие настроек для инженера

Наличие настроек для преподавателя

Наличие настроек для тестируемого

Портативность

Наличие сетевой версии

+ (интернет)

Занимаемый объем

20,8 Мб / 60 Мб

Основываясь на установленной системе показателей качества, проводить оценку разных программ одинакового назначения в целях выявления лучшего их них.

При разработке показателей, оценивающих системы создания тестов, за основу были взяты особенности этого типа программ. В дальнейшем можно расширить перечень рассматриваемых показателей, изменить согласно особенностям других видов программных средств.

Рецензенты:

Доррер Г.А., д.т.н., профессор, зав. кафедрой, ФГБОУ ВПО «Сибирский государственный технологический университет», г. Красноярск;

Левшина В.В., д.т.н., профессор, зав. кафедрой управления качеством и математических методов экономики, ФГБОУ ВПО «Сибирский государственный технологический университет», г. Красноярск.

Работа поступила в редакцию 07.05.2013.

Библиографическая ссылка

Горбаченко И.М. ОЦЕНКА КАЧЕСТВА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ СОЗДАНИЯ СИСТЕМ ТЕСТИРОВАНИЯ // Фундаментальные исследования. – 2013. – № 6-4. – С. 823-827;
URL: http://fundamental-research.ru/ru/article/view?id=31642 (дата обращения: 04.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Аннотация: Рассматриваются характеристики качества программных продуктов. Отмечается, что вопросы качества должны решаться на протяжении всего жизненного цикла. Показано, тестирование программного продукта позволяет гарантировать заданные параметры качества. Рассматриваются различные типы тестов и инструментарий тестирования в VisualStudio 2012. Показано, что рефакторинг кода улучшает качество программного продукта.

Презентацию к данной лекции Вы можете скачать .

Цель лекции:

Получить представление о способах и инструментарии обеспечения качества программных продуктов.

Введение

Качество программного продукта определяется по нескольким критериям. Качественный программный продукт должен отвечать функциональным и нефункциональным требованиям, в соответствии с которыми он создавался, иметь ценность для бизнеса, отвечать ожиданиям пользователей .

В жизненном цикле управления приложениями качество должно отслеживаться на всех этапах жизненного цикла ПО . Оно начинает формироваться с определения необходимых требований. При задании требований необходимо указывать желаемую функциональность и способы проверки её достижения.

Качественный программный продукт должен обладать высоким потребительским качеством, независимо от области применения: внутреннее использование разработчиком, бизнес, наука и образование, медицина, коммерческие продажи, социальная сфера, развлечения, веб и др. Для пользователя программный продукт должен удовлетворять определенному уровню его потребностей.

Важным аспектом создания качественного ПО является обеспечение нефункциональных требований, таких как удобство в эксплуатации, надежность , производительность , защищенность, удобство сопровождения . Надежность ПО определяет способность без сбоев выполнять заданные функции в заданных условиях и в течение заданного отрезка времени. Производительность характеризуется временем выполнения заданных транзакций или длительных операций. Защищенность определяет степень безопасности системы от повреждений, утраты, несанкционированного доступа и преступной деятельности. Удобство сопровождения определяет легкость, с которой обслуживается продукт в плане простоты исправления дефектов, внесения корректив для соответствия новым требованиям, управления измененной средой.

Управление жизненным циклом программного продукта помогает разработчикам целенаправленно добиваться создания качественного ПО , избегать потерь времени на переделку, повторное проектирования и перепрограммирование ПО .

Тестирование программного обеспечения

Тестирование программного продукта позволяет на протяжении всего жизненного цикла ПО гарантировать, что программные проекты отвечают заданным параметрам качества. Главная цель тестирования - определить отклонения в реализации функциональных требований, обнаружить ошибки в выполнении программ и исправить их как можно раньше в процессе выполнения проекта.

На протяжении всего жизненного цикла разработки ПО применяются различные типы тестирования для гарантии того, что промежуточные версии отвечают заданным показателям качества. При этом применяются автоматические и ручные тесты.

Модульное тестирование предназначено для проверки правильности функционирования методов классов ПО. Модульные тесты пишутся и исполняются разработчиками в процессе написания кода. Модульное тестирование применяется как для проверки качества кода приложения, так и для проверки объектов баз данных.
предназначено для тестирования, при котором тестировщик не имеет заранее определенных тестовых сценариев и пытается интуитивно исследовать возможности программного продукта и обнаружить и зафиксировать неизвестные ошибки.
Интеграционное тестирование используется для проверки корректности совместной работы компонентов программного продукта.
Функциональное тестирование предполагает проверку конкретных требований к ПО и проводится после добавление к системе новых функций.
Нагрузочное тестирование предназначено для проверки работоспособности программного продукта при предельной входной нагрузке.
Регрессионное тестирование применяется при внесении изменений в программное обеспечение с целью проверки корректности работы компонентов системы, которые потенциально могут взаимодействовать с измененным компонентом.
Комплексное тестирование предназначено для тестирования функциональных и нефункциональных требований всей системы программного продукта.
Приемочное тестирование представляет собой функциональные испытания, которые должны подтвердить то, что программный продукт соответствует требованиям и ожиданиям пользователей и заказчиков. Приемочные тесты пишутся бизнес-аналитиками, специалистами по контролю качества и тестировщиками.

Для разработчика программного обеспечения в VisualStudio 2012 предоставлена возможность создавать модульные и нагрузочные тесты, а также тесты пользовательского интерфейса. В VisualStudio 2012 имеются следующие шаблоны тестовых проектов:

  • проект модульного теста, который позволяет создавать модульные тесты в процессе разработки;
  • проект с веб-тестами производительности и нагрузочными тестами;
  • проект с закодированными тестами пользовательского интерфейса.

Инструментарием тестировщика в VisualStudio 2012 является MicrosoftTestManager (MTM). MTM предназначен для управления жизненным циклом тестирования программного обеспечения, включая планирование, тестирование и мониторинг . MTM интегрирован с TeamFoundationServer. С помощью Microsoft TestManager тестировщики подготавливают планы тестирования, управляют тестированием. При создании плана тестирования в него добавляются наборы тестов, тестовые случаи и конфигурации, необходимые для тестирования. Конфигурации используются для установления среды, в которой будут исполняться наборы тестов. Microsoft TestManager позволяет выполнять ручные и автоматические тесты, а также исследовательские тесты. Результаты тестирования сохраняются в базе данных, что позволяет подготавливать различные аналитические отчеты. Ошибки, выявленные в процессе тестирования, фиксируются, документируются и передаются разработчикам для их устранения. При внесении изменений в код программной системы возникает необходимость в регрессионном тестировании, причем MTM автоматически формирует план регрессионного тестирования, выявляя какие тесты должны быть повторно выполнены.

Для тестировщиков и разработчиков программного обеспечения VisualStudio 2012 включает диспетчер виртуальной среды LabManagement. Инструментарий тестирования LabManagement позволяет создать инфраструктуру, которая максимально близко эмулирует реальную среду планируемого использования программного продукта. Такие среды могут использоваться для выполнения автоматических построений, автоматизации тестов и выполнения разработанного кода.

Рефакторинг

Качество кода программного продукта во многом определяется тем, насколько трудно или легко вносить изменения в код, а также тем насколько доступен код для понимания. Созданное программное приложение может выполнять требуемые функции, но иметь проблемы с внесением изменений или пониманием созданного кода. В этом случае такое ПО нельзя назвать качественным, так как на этапе его сопровождения могут возникнуть проблемы с его модификацией при изменении пользовательских требований.

Для улучшения качества кода программных приложений применяют рефакторинг [ , ]. По определению Фаулера М. рефакторинг определяется как "процесс изменения программной системы таким образом, что её внешнее поведение не изменяется, а внутренняя структура улучшается". Следовательно, в процессе проектирования для создания высококачественного программного продукта необходимо не только обеспечить выполнение функциональных требований, но и нефункциональных, в частности, удобства сопровождения, что предполагает возможность и простоту внесения изменений в код, а также возможность легкого понимания созданного кода.

Некачественный дизайн кода определяется по ряду признаков :

  • жесткость - характеристика программы, затрудняющая внесение изменений в код;
  • хрупкость - свойство программы повреждаться во многих местах при внесении единственного изменения;
  • косность характеризуется тем, что код содержит части, которые могли бы оказаться полезными в других системах, но усилия и риски, сопряженные с попыткой отделить эти части кода от оригинальной системы, слишком велики;
  • ненужная сложность характеризуется тем, что программа содержит элементы, которые не используются в текущий момент;
  • ненужные повторения, которые состоят в повторяющихся фрагментах кода в программе;
  • непрозрачность, которая характеризует трудность кода для понимания.

Для создания качественного дизайна кода целесообразно применять некоторые принципы и паттерны проектирования ПО [ , ].

Принцип единственной обязанности определяет, что у класса должна быть только одна причина для изменения. Из этого принципа следует, что классу целесообразно поручать только одну обязанность.

Принцип открытости/закрытости определяет, что программные сущности (классы, модули, функции) должны быть открыты для расширения, но закрыты для модификации.

Принцип подстановки Лисков определяет, что должна быть возможность вместо базового класса подставить любой его подтип .

Принцип инверсии зависимостей определяет два положения:

  • модули верхнего уровня не должны зависеть от модулей нижнего уровня. И те и другие должны зависеть от абстракций;
  • абстракции не должны зависеть от деталей. Детали должны зависеть от абстракций.

Принцип разделения интерфейсов определяет, что клиенты должны знать только об абстрактных интерфейсах, обладающих свойством сцепленности.

Паттерны проектирования предлагают универсальные, проверенные практикой решения. В приведен обширный перечень паттернов. Среди общего списка паттернов следует выделить те, которые целесообразно применять при гибкой разработке программного обеспечения. Это паттерны Команда , Стратегия, Фасад, Посредник, Одиночка, Фабрика, Компоновщик, Наблюдатель, Абстрактный сервер/адаптер/ шлюз , Заместитель и Шлюз , Посетитель и Состояние.

Использование паттернов при разработке позволяет создавать программное обеспечение , которое легко модифицировать и сопровождать.

Следует отметить, что для проведения рефакторинга необходимо иметь надежные тесты, которые обеспечивают контроль соблюдения функциональных требований при улучшении дизайна кода программного обеспечения.

Ключевые термины

Модульное тестирование тестирование, предназначенное для проверки правильности функционирования методов классов ПО.
Исследовательское тестирование тестирование, при котором тестировщик не имеет заранее определенных тестовых сценариев и пытается интуитивно исследовать возможности программного продукта и обнаружить и зафиксировать неизвестные ошибки.
Интеграционное тестирование тестирование, предназначенное для проверки корректности совместной работы компонентов программного продукта.
Функциональное тестирование тестирование, предназначенное для проверки конкретных требований к ПО, которое проводится после добавление к системе новых функций.
Нагрузочное тестирование тестирование, предназначенное для проверки работоспособности программного продукта при предельной входной нагрузке.
Регрессионное тестирование тестирование, применяемое при внесении изменений в программное обеспечение, с целью проверки корректности работы компонентов системы, которые потенциально могут взаимодействовать с измененным компонентом.
Комплексное тестирование тестирование, предназначенное для проверки соответствия функциональных и нефункциональных требований всей системы программного продукта.
Приемочное тестирование тестирование, представляющее собой функциональные испытания, которые должны подтвердить то, что программный продукт соответствует требованиям и ожиданиям пользователей и заказчиков.
MicrosoftTestManager инструментарий Microsoft, предназначенный для управления жизненным циклом тестирования программного обеспечения.
LabManagement диспетчер виртуальной среды тестирования.

Набор для практики

Вопросы

  1. Какими характеристиками должен обладать качественный программный продукт?
  2. Какие нефункциональные требования определяют качество программного продукта?
  3. Какая роль тестирования в обеспечении качества программного продукта?
  4. Какие типы тестов используют для проверки качества программного продукта?
  5. Для чего применяется регрессионное тестирование?
  6. Какие шаблоны тестовых проектов имеются вVisualStudio 2012?
  7. Для чего применяется MicrosoftTestManager? Какие он имеет функциональные возможности?
  8. Для чего используется LabManagement при тестировании?
  9. Для чего применяют рефакторинг кода?
  10. Приведите признаки некачественного кода.

Упражнения

  1. Подготовьте аналитический обзор по NUnit тестированию.
  2. Подготовьте аналитический обзор по xUnit.net тестированию.
  3. Подготовьте аналитический обзор по MbUnit тестированию.

Основной проблемой в управлении качеством является тот факт, что определение качества слишком неясное и неоднозначное. Это вызвано тем, что обычно термин качество понимается неправильно. Такая путаница может объясняться несколькими причинами...

Попробуем ответить на вопросы:

  • Популярный взгляд на качество
  • Выводы

Что такое качество программного обеспечения?

В нашем первом выпуске мы попытаемся дать определение терминами качество и качество программного обеспечения.

Основной проблемой в управлении качеством является тот факт, что определение качества слишком неясное и неоднозначное. Это вызвано тем, что обычно термин качество понимается неправильно. Такая путаница может объясняться несколькими причинами.

Первая , качество это не отдельно взятая идея или понятие, скорее многомерная и разноплановая концепция.

Вторая , для любого понятия и определения существует несколько уровней абстракции, например, когда люди говорят о качестве, одна часть понимает под этим слишком широкий и размытый смысл, в то время как другая может ссылаться на конкретное определение и значение.

Третья , термин качество является неотъемлемой частью нашего повседневного общения, однако общепринятое и профессиональное использование может быть весьма сильно отличаться.

Популярный взгляд на качество

Общепринятое мнение о качестве таково, что это нечто нематериальное и "неосязаемое" - о нем могут вестись споры и дискуссии, его можно критиковать и восхвалять, но взвесить и измерить качество невозможно. Такие выражения как «хорошее качество» и «плохое качество» служат наглядным примером, как люди говорят о чем-нибудь неопределенном для них, то, что они не могут четко характеризовать и определить. Такое мнение отражает тот факт, что люди воспринимают и интерпретируют качество по-разному. Подразумевается, что качество не может быть контролируемым и управляемым, и тем более оно не может быть количественно измеримым. Такой взгляд ярко контрастирует с профессиональным подходом к управлению качеством - качество это четко определенная величина, которую можно измерить и проконтролировать, она поддается управлению и улучшению.

Другое популярное мнение, что качество неразрывно связанно с роскошью, первым сортом и тонким вкусом. Дорогой, досконально продуманный и более технически сложный продукт рассматривается как гарантия высочайшего качества, нежели более дешевые аналоги. Следуя такой логике Кадиллак - это качественная машина, а Шевроле нет, невзирая на надежность и количество поломок; или же HI-FI система это качественная система, а обыкновенное радио - нет. Согласно такому подходу, качество ограниченно определенным классом дорогостоящих продуктов с замысловатой функциональностью и классовым продуктам. Проще говоря, едва ли недорогой продукт будет классифицирован как качественный продукт.

Профессиональный подход к качеству

К сожалению, такое неопределенное и расплывчатое представление не может быть использовано для улучшения процессов разработки программного обеспечения. Следовательно, необходимо дать четкое и удобное для работы определение. В 1979 году Crosby определил качество как «соответствие требованиям» ("conformance to requirements"), а Juran и Gryna в 1970 определили качество как «пригодность к использованию» ("fitness for use"). Эти два определения тесно связанны и прекрасно согласуются, как мы увидим позже.

«Соответствие требованиям» предполагает, что требования должны быть настолько четко определены, что они не могут быть поняты и интерпретированы некорректно. Позже, на этапе разработки, производятся регулярные измерения разработанного продукта, для определения соответствия требованиям. Любые несоответствия должны рассматриваются как дефекты – отсутствие качества. Например, спецификация на определенную модель радиостанции может требовать возможности принимать определенную частоту радиоволн на расстоянии более чем 30 километров от источника вещания. В случае, если радиостанция неспособна выполнить данное требование, она не удовлетворяет требования к качеству и должна быть признана негодной и некачественной. Исходя из тех же принципов, если Кадиллак соответствует всем требованиям к машинам Кадиллак, значит это качественная машина. Если Шевроле соответствует всем требованиям к машинам Шевроле, следовательно, это тоже качественная машина. Эти две машины могут быть совершенно разными по стилю, скорости и экономичности, но если обе измерять по стандартным для них наборам, тогда они обе будут являться качественными машинами.

Определение «Пригодность к использованию» принимает во внимание требования и ожидания конечных пользователей продукта, которые ожидают, что продукт или предоставляемый сервис будет удобным для их нужд. Однако разные пользователи могут использовать продукт по-разному, это означает, что продукт должен обладать максимально разнообразными вариантами использования. Согласно определению Juran каждый вариант использования это характеристика качества и все они могут быть классифицированы по категориям в качестве параметров пригодности к использованию.

Эти два определения качества («соответствие требованиям» и «пригодность к использованию») по существу одинаковы. Разница в том, что вариант «пригодность к использованию» указывает на важную роль требований и ожиданий заказчика. Роль заказчика, связанная с качеством, никогда не может быть переоценена. С точки зрения заказчика, качество продукта, который он приобрел, состоит из множества различных факторов, таких как: цена, производительность, надежность и т.д.

Только ваш заказчик может рассказать вам о качестве, потому что это единственное что он действительно покупает. Заказчик не покупает продукт. Он покупает ваши гарантии того, что все его ожидания к продукту будут реализованы.

Guaspari ”I Know It When I See It”

Выводы

Давайте еще раз попытаемся дать определение качеству с точки зрения заказчика или пользователя продукта.

Качество - это пригодность к использованию. Делает ли данный продукт то, в чем я нуждаюсь, облегчает ли он мою работу, могу ли я его использовать так, как мне удобно.

А теперь посмотрим на точку зрения разработчика.

Качество - это соответствие специфицированным и собранным требованиям делает ли данный продукт все то, что указано в требованиях.

Проблема в том, что специфицированные и собранные требования это обычно лишь часть всех реальных требований и ожиданий заказчика. Где же правильное определение качества?

Качество это соответствие реальным требованиям, явным и неявным. Очень часто неявные требования настолько очевидны для заказчика или пользователя, что он даже не предполагает, что они неизвестны разработчикам. Для примера вернемся к нашим автомобилям - заказчик может детально описать требования к дизайну, параметрам двигателя, оформлению салона, цвету кузова, но нигде не указать, что шины должны быть круглыми, а лобовое стекло - прозрачным.

Заказчик будет удовлетворен только тогда, когда купленный продукт будет полностью удовлетворять его реальным и жизненным требованиям, как специфицированным, так и нет.

Быстрое увеличение сложности и размеров современных комплексов программ при одновременном росте ответственности выполняемых функций резко повысило требования со стороны заказчиков и пользователей к их качеству и безопасности применения. Испытанным средством обеспечения высокой эффективности и качества функционирования программ и программных комплексов являются международные стандарты, разработанные при участии представителей ведущих компаний отрасли.

По мере расширения применения и увеличения сложности информационных систем выделились области, в которых ошибки или недостаточное качество программ либо данных могут нанести ущерб, значительно превышающий положительный эффект от их использования.

Во многих случаях контракты и предварительные планы на создание сложных программных средств и баз данных для информационных систем подготавливаются и оцениваются неквалифицированно, на основе неформализованных представлений заказчиков и разработчиков о требуемых функциях и характеристиках качества информационных систем. Значительные системные ошибки при определении требуемых показателей качества, оценке трудоемкости, стоимости и длительности создания программных средств - явление достаточно массовое. Многие информационные системы не способны выполнять полностью требуемые функциональные задачи с гарантированным качеством, и их приходится долго и иногда безуспешно дорабатывать для достижения необходимого качества и надежности функционирования, затрачивая дополнительно большие средства и время. В результате часто проекты информационных систем не соответствуют исходному, декларированному назначению и требованиям к характеристикам качества, не укладываются в графики и бюджет разработки.

В технических заданиях и реализованных проектах информационных систем часто обходятся молчанием или недостаточно формализуются сведения о понятиях и значениях качества программного продукта, о том, какими характеристиками они описываются, как их следует измерять и сравнивать с требованиями, отраженными в контракте, техническом задании или спецификациях. Кроме того, некоторые из характеристик часто отсутствуют в требованиях на программные средства, что приводит к произвольному их учету или к пропуску при испытаниях. Нечеткое декларирование в документах понятий и требуемых значений характеристик качества программных средств вызывает конфликты между заказчиками-пользователями и разработчиками-поставщиками из-за разной трактовки одних и тех же характеристик. В связи с этим стратегической задачей в жизненном цикле современных информационных систем стало обеспечение требуемого качества программных средств и баз данных.

За последние несколько лет создано множество международных стандартов, регламентирующих процессы и продукты жизненного цикла программных средств и баз данных. Применение этих стандартов может служить основой для систем обеспечения качества программных средств, однако требуется корректировка, адаптация или исключение некоторых положений стандартов применительно к принципиальным особенностям технологий и характеристик этого вида продукции. При этом многие клиенты требуют соответствия технологии проектирования, производства и качества продукции современным международным стандартам, которые необходимо осваивать и применять для обеспечения конкурентоспособности продукции на мировом рынке.

Стандартизация характеристик качества

Одной из важнейших проблем обеспечения качества программных средств является формализация характеристик качества и методология их оценки. Для определения адекватности качества функционирования, наличия технических возможностей программных средств к взаимодействию, совершенствованию и развитию необходимо использовать стандарты в области оценки характеристик их качества. Основой регламентирования показателей качества программных средств ранее являлся международный стандарт ISO 9126:1991 (ГОСТ Р ИСО / МЭК 9126-93) "Информационная технология. Оценка программного продукта. Характеристики качества и руководство по их применению". Завершается разработка и формализован последний проект состоящего из четырех частей стандарта ISO 9126-1--4 для замены небольшой редакции 1991 года. Проект состоит из следующих частей под общим заголовком "Информационная технология - характеристики и метрики качества программного обеспечения": "Часть 1. Характеристики и субхарактеристики качества" Часть 2. Внешние метрики качества" "Часть 3. Внутренние метрики качества" "Часть 4. Метрики качества в использовании".

В России в области обеспечения жизненного цикла и качества сложных комплексов программ в основном применяется группа устаревших ГОСТов, которые отстают от мирового уровня на 5-10 лет .

Первая часть стандарта - ISO 9126-1 - распределяет атрибуты качества программных средств по шести характеристикам, используемым в остальных частях стандарта. Исходя из принципиальных возможностей их измерения, все характеристики могут быть объединены в три группы, к которым применимы разные категории метрик:

  • категорийным, или описательным (номинальным) метрикам наиболее адекватны функциональные возможности программных средств;
  • количественные метрики применимы для измерения надежности и эффективности сложных комплексов программ;
  • качественные метрики в наибольшей степени соответствуют практичности, сопровождаемости и мобильности программных средств.

В части стандарта ISO 9126-1 даются определения с уточнениями из остальных его частей для каждой характеристики программного средства, а также для субхарактеристик качества.

За последние несколько лет создано множество стандартов ISO, регламентирующих процессы и продукты жизненного цикла программных средств и баз данных, которые могут служить основой для систем обеспечения качества программных продуктов .

Вторая и третья части стандарта - ISO 9126-2 и ISO 9126-3 - посвящены формализации соответственно внешних и внутренних метрик характеристик качества сложных программных средств. Все таблицы содержат унифицированную рубрикацию, где отражены имя и назначение метрики; метод ее применения; способ измерения, тип шкалы метрики; тип измеряемой величины; исходные данные для измерения и сравнения; а также этапы жизненного цикла программного средства (по ISO 12207), к которым применима метрика.

Четвертая часть стандарта - ISO 9126-4 - предназначена для покупателей, поставщиков, разработчиков, сопровождающих, пользователей и менеджеров качества программных средств. В ней обосновываются и комментируются выделенные показатели сферы (контекста) использования программных средств и группы выбранных метрик для пользователей.

Выбор показателей качества

Исходными данными и высшим приоритетом при выборе показателей качества в большинстве случаев являются назначение, функции и функциональная пригодность соответствующего программного средства. Достаточно полное и корректное описание этих свойств должно служить базой для определения значений большинства остальных характеристик и атрибутов качества. Принципиальные и технические возможности и точность измерения значений атрибутов характеристик качества всегда ограничены в соответствии с их содержанием. Это определяет рациональные диапазоны значений каждого атрибута, которые могут быть выбраны на основе здравого смысла, а также путем анализа прецедентов в спецификациях требований реальных проектов.

Процессы выбора и установления метрик и шкал для описания характеристик качества программных средств можно разделить на два этапа:

  • выбор и обоснование набора исходных данных, отражающих общие особенности и этапы жизненного цикла проекта программного средства и его потребителей, каждый из которых влияет на определенные характеристики качества комплекса программ;
  • выбор, установление и утверждение конкретных метрик и шкал измерения характеристик и атрибутов качества проекта для их последующей оценки и сопоставления с требованиями спецификаций в процессе квалификационных испытаний или сертификации на определенных этапах жизненного цикла программного средства.

На первом этапе за основу следует брать всю базовую номенклатуру характеристик, субхарактеристик и атрибутов, стандартизированных в ISO 9126. Их описания желательно предварительно упорядочить по приоритетам с учетом назначения и сферы применения конкретного проекта программного средства. Далее необходимо выделить и ранжировать по приоритетам потребителей, которым необходимы определенные показатели качества проекта программного средства с учетом их специализации и профессиональных интересов. Подготовка исходных данных завершается выделением номенклатуры базовых, приоритетных показателей качества, определяющих функциональную пригодность программного средства для определенных потребителей.

На втором этапе, после фиксирования исходных данных, которое должен выполнить потребитель оценок качества, процессы выбора номенклатуры и метрик начинаются с ранжирования характеристик и субхарактеристик для конкретного проекта и их потребителя. Далее этими специалистами для каждого из отобранных показателей должна быть установлена и согласована метрика и шкала оценок субхарактеристик и их атрибутов для проекта и потребителя результатов анализа. Для показателей, представляемых качественными признаками, желательно определить и зафиксировать в спецификациях описания условий, при которых следует считать, что данная характеристика реализуется в программном средстве. Выбранные значения характеристик качества и их атрибутов должны быть предварительно проверены разработчиками на их реализуемость с учетом доступных ресурсов конкретного проекта и при необходимости откорректированы.

Оценка качества

Методологии и стандартизации оценки характеристик качества готовых программных средств и их компонентов (программного продукта) на различных этапах жизненного цикла посвящен международный стандарт ISO 14598, состоящий из шести частей. Рекомендуется следующая общая схема процессов оценки характеристик качества программ:

  • установка исходных требований для оценки - определение целей испытаний, идентификация типа метрик программного средства, выделение адекватных показателей и требуемых значений атрибутов качества;
  • селекция метрик качества, установление рейтингов и уровней приоритета метрик субхарактеристик и атрибутов, выделение критериев для проведения экспертиз и измерений;
  • планирование и проектирование процессов оценки характеристик и атрибутов качества в жизненном цикле программного средства;
  • выполнение измерений для оценки, сравнение результатов с критериями и требованиями, обобщение и оценка результатов.

Для каждой характеристики качества рекомендуется формировать меры и шкалу измерений с выделением требуемых, допустимых и неудовлетворительных значений. Реализация процессов оценки должна коррелировать с этапами жизненного цикла конкретного проекта программного средства в соответствии с применяемой, адаптированной версией стандарта ISO 12207.

Функциональная пригодность - наиболее неопределенная и объективно трудно оцениваемая субхарактеристика программного средства. Области применения, номенклатура и функции комплексов программ охватывают столь разнообразные сферы деятельности человека, что невозможно выделить и унифицировать небольшое число атрибутов для оценки и сравнения этой субхарактеристики в различных комплексах программ.

Оценка корректности программных средств состоит в формальном определении степени соответствия комплекса реализованных программ исходным требованиям контракта, технического задания и спецификаций на программное средство и его компоненты. Путем верификации должно быть определено соответствие исходным требованиям всей совокупности к компонентов комплекса программ, вплоть до модулей и текстов программ и описаний данных.

Оценка способности к взаимодействию состоит в определении качества совместной работы компонентов программных средств и баз данных с другими прикладными системами и компонентами на различных вычислительных платформах, а также взаимодействия с пользователями в стиле, удобном для перехода от одной вычислительной системы к другой с подобными функциями.

Оценка защищенности программных средств включает определение полноты использования доступных методов и средств защиты программного средства от потенциальных угроз и достигнутой при этом безопасности функционирования информационной системы. Наиболее широко и детально методологические и системные задачи оценки комплексной защиты информационных систем изложены в трех частях стандарта ISO 15408:1999-1--3 "Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий".

Оценка надежности - измерение количественных метрик атрибутов субхарактеристик в использовании: завершенности, устойчивости к дефектам, восстанавливаемости и доступности/готовности.

Потребность в ресурсах памяти и производительности компьютера в процессе решения задач значительно изменяется в зависимости от состава и объема исходных данных. Для корректного определения предельной пропускной способности информационной системы с данным программным средством нужно измерить экстремальные и средние значения длительностей исполнения функциональных групп программ и маршруты, на которых они достигаются. Если предварительно в процессе проектирования производительность компьютера не оценивалась, то, скорее всего, понадобится большая доработка или даже замена компьютера на более быстродействующий.

Оценка практичности программных средств проводится экспертами и включает определение понятности, простоты использования, изучаемости и привлекательности программного средства. В основном это качественная (и субъективная) оценка в баллах, однако некоторые атрибуты можно оценить количественно по трудоемкости и длительности выполнения операций при использовании программного средства, а также по объему документации, необходимой для их изучения.

Сопровождаемость можно оценивать полнотой и достоверностью документации о состояниях программного средства и его компонентов, всех предполагаемых и выполненных изменениях, позволяющей установить текущее состояние версий программ в любой момент времени и историю их развития. Она должна определять стратегию, стандарты, процедуры, распределение ресурсов и планы создания, изменения и применения документов на программы и данные.

Оценка мобильности - качественное определение экспертами адаптируемости, простоты установки, совместимости и замещаемости программ, выражаемое в баллах. Количественно эту характеристику программного средства и совокупность ее атрибутов можно (и целесообразно) оценить в экономических показателях: стоимости, трудоемкости и длительности реализации процедур переноса на иные платформы определенной совокупности программ и данных.

Система управления качеством

Выбор характеристик и оценка качества программных средств - лишь одна из задач в области обеспечения качества продукции, выпускаемой компаниями - разработчиками ПО. Комплексное решение задач обеспечения качества программных средств предполагает разработку и внедрение той или иной системы управления качеством. В мировой практике наибольшее распространение получила система, основанная на международных стандартах серии ISO 9000, включающей десяток с лишним документов, в том числе стандарт, регламентирующий обеспечение качества ПО (ISO 9000/3). Эти стандарты должны служить руководством для ведущих специалистов компаний, разрабатывающих ПО на заказ.

Определения характеристик и субхарактеристик качества (ISO 9126-1)

Функциональные возможности - способность программного средства обеспечивать решение задач, удовлетворяющих сформулированные потребности заказчиков и пользователей при применении комплекса программ в заданных условиях.

Функциональная пригодность - набор и описания субхарактеристики и ее атрибутов, определяющие назначение, номенклатуру, основные, необходимые и достаточные функции программного средства, соответствующие техническому заданию и спецификациям требований заказчика или потенциального пользователя.

Правильность (корректность) - способность программного средства обеспечивать правильные или приемлемые для пользователя результаты и внешние эффекты.

Способность к взаимодействию - свойство программных средств и их компонентов взаимодействовать с одной или большим числом компонентов внутренней и внешней среды.

Защищенность - способность компонентов программного средства защищать программы и информацию от любых негативных воздействий.

Качество программного обеспечения (ПО) определяется на основе изучения внешних и внутренних особенностей продукта. Внешнее качество определяется по тому, как оно работает в режиме реального времени, насколько продуктивно для пользователей. Вторая особенность фокусируется на внутренних аспектах, которые зависят от качества написанного кода. Пользователь больше сосредотачивается на том, как ПО работает на внешнем уровне, качество которого может поддерживаться только в том случае, если специалист написал хороший программный код.

Качество программного обеспечения

В настоящее время существует два важных подхода, которые используются для определения качества ПО:

  1. Управление дефектами.
  2. Атрибут качества.

Все, что не соответствует требованию клиента, попадает в разряд дефектов. Команда разработчиков, которая не в состоянии полностью понять требования клиента, будет допускать ошибки проектирования.

В управлении дефектами их категории определяются на основе серьезности. Количество проблем с ПО подсчитывается и принимаются меры, согласно установленной серьезности. Контрольные диаграммы могут быть созданы для измерения возможностей процесса разработки.

Качество программного обеспечения значительно улучшилось за последние два десятилетия. Одна из причин этого заключается в том, что компании используют новые технологии, такие как объектно-ориентированную разработку и инструменты CASE. Кроме того, можно наблюдать растущую важность внедрения методов управления на производстве.

Управление качеством ПО делится на три основных направления:

  1. Гарантия. Разработка основ организационных мероприятий и стандартов качества программного обеспечения..
  2. Планирование. Выбор соответствующих стандартов и адаптация под конкретный программный проект.
  3. Контроль. Определение процессов, которые гарантируют, что разработка ПО соответствует стандартам качества.

Политика организации SQA

Политика организации в отношении качества программного обеспечения должна выполнять следующие требования:

  • Соответствие целям и задачам организации.
  • Приверженность общим концепциям обеспечения качества.
  • Приверженность стандартам качества, принятым организацией.
  • Обязательства выделять адекватные ресурсы.
  • Стремление к постоянному улучшению качества и производительности организации.

Чтобы были выполнены все требования стандарта, компании назначают ответственного по качеству. Обязанности данного сотрудника:

  • Ответственность за подготовку годовой программы мероприятий и бюджета SQA.
  • Организация разработки планов развития системы SQA.
  • Общий контроль за выполнением ежегодной программы регулярных мероприятий и запланированных проектов развития.
  • Определение соответствия программы мероприятий характеристикам и объему услуг субподрядчика и закупок ПО, запланированных на будущий год.
  • Презентация и пропаганда вопросов SQA для исполнительного руководства.
  • Изучение предложений, подготовленных отделом SQA для ежегодной программы мероприятий, проверка потенциала предложения для достижения целей.

Концепции высокого уровня

Качественные характеристики - это концепции высокого уровня, которые отражают важные аспекты и не подвергаются прямой оценке качества программного обеспечения. Вместо этого в плане должны быть определены соответствующие показатели, которые можно использовать для определения одной или нескольких характеристик.

Например, при оценке синтаксического анализатора XML можно использовать набор тестов на соответствие XML W3C. Он включает в себя тесты, разработанные для удовлетворения всех направлений контроля, а также рекомендации W3C Extensible Markup Language (XML) с особым акцентом на требованиях к обработке ошибок в правильности или достоверности документов XML. Таким образом процент пройденных тестовых случаев используется, как метрика для оценки следующих характеристик рассматриваемого XML-анализатора:

  • Перспектива пользователя.
  • Функциональность.
  • Надежность и отказоустойчивость.

С точки зрения пользователя есть несколько важных характеристик, отвечающих на следующие вопросы:

  • Кто предоставляет полный спектр необходимых функций по назначению?
  • Надежно ли работает ПО для получения необходимых результатов при правильном использовании?
  • Функционирует ли программа безопасно и надежно в случае неправильного ввода?
  • Легко ли использовать программный продукт?
  • ПО функционирует быстро или кажется излишне медленным?
  • Хорошо ли сочетается программа с другим продуктом, который использует пользователь?

Считая, что вопросы качества пользователю важны, ИТ-группа, отвечающая за развертывание и обслуживание ПО, может столкнуться с другими проблемами:

  1. Защита от вредоносных атак.
  2. Качество использования вычислительных ресурсов.

Некачественными ресурсами считаются те, которые требует больше памяти и вычислительной мощности, чем необходимо.

ИСО обеспечивает эту модель двумя новыми категориями высшего уровня, связанными с технологическим обеспечением качества программного обеспечения.

Требования ISO 9126 к продукту

ISO 9126 является международным стандартом для оценки ПО. Он разделен на четыре части, в которых рассматриваются следующие темы:

  • Внешние показатели.
  • Внутренние показатели.
  • Модель качества.
  • Показатели качества программного обеспечения.

Первая часть ISO 9126 является расширением предыдущего стандарта, выполненного McCall (1977), Boehm (1978) и FURPS в определении набора характеристик качества.

  • Функциональность.
  • Надежность.
  • Юзабилити.
  • Ремонтопригодность.
  • Портативность.

Функциональность продукта

Функциональность является основной целью любого продукта или услуги. Чем больше возможностей использования товара, тем сложнее становится определить его функциональность. Для ПО может быть указан список того, что для него доступно.

Некоторые перечисленные характеристики ПО (например, удобство) присутствуют только в определенной степени, то есть не просто «включен» или «отключен». Многие люди путают общую функциональность процесса и программного продукта. Часто это связано с тем, что диаграммы потоков данных (DFD) и другие инструменты моделирования могут отражать функциональность процесса, как набор преобразованных данных в data out.

ISO 9126-1 и другие модели качества не помогают измерить общие затраты или выгоды процесса, а исследуют только программный компонент. Взаимосвязь между функциональными возможностями ПО в рамках общего бизнес-процесса выходит за рамки ISO 9126.

Следующие возможности атрибутов характеризуют полезность ПО в данной среде. Каждая из них может быть измерена только при наличии соответствующих программ системы.

Как только система программного обеспечения начинает функционировать, характеристика надежности определяет ее способность поддерживать предоставление своих услуг в определенных условиях в течение конкретных периодов времени. Одним из аспектов этой характеристики является отказоустойчивость. Например, если сеть отключается в течение 20 секунд, то система должна быть в состоянии восстановить и продолжить работу.

Способность учиться использовать систему (обучаемость) является одной из основных характеристик юзабилити.

КПД связан с системными ресурсами, применяемыми при предоставлении необходимой функциональности. Объем дискового пространства, память и сеть являются хорошими показателями КПД. Как и в случае ряда других критериев, существуют совпадения между ними. Например, удобство использования системы влияет на ее производительность.

Способность идентифицировать и исправить ошибку в программном компоненте - это то, к чему относится характеристика ремонтопригодности. На ее показатели влияет читаемость или сложность кода, а также модульность. Это то, что помогает идентифицировать причину неисправности, чтобы затем устранить ее.

Характеристики ремонтопригодности:

  • Анализируемость - выявляет основную причину отказа.
  • Изменчивость - определяет усилия, которые прилагаются к модификации кода для устранения ошибки.
  • Стабильность - демонстрирует, насколько стабильна система в работе, когда в нее вносятся изменения.
  • Тестируемость - определяет, сколько усилий идет на тестирование системы.
  • Переносимость - способность системы адаптироваться к изменениям в ее среде.
  • Адаптируемость - насколько легко система адаптируется к изменениям, внесенным в спецификации.
  • Скорость установки - насколько легко система может быть установлена.
  • Возможность замены - насколько легко можно заменить компонент системы.
  • Стоимость качества ПО. Она очень важна. Когда разработчик решит провести тестирование для своего продукта, он на самом деле собирается потратить время, деньги и усилия на ее проверку.
  • Пригодность - определяет, соответствуют ли функции ПО требованиям.
  • Точность - устанавливает правильность реализации функций.
  • Функциональная совместимость - взаимодействуя с другими компонентами системы.
  • Соответствие ПО необходимым законам и рекомендациям.
  • Обеспечение качества и безопасности программного обеспечения и обработки транзакций, связанных с данными.
  • Надежность - способность ПО работать в определенных условиях в течение обозначенного периода времени.
  • Зрелость - частота сбоев ПО.
  • Восстанавливаемость - представление о способности системы вернуться к полноценной работе после сбоя.

Портативность относится к тому, насколько хорошо ПО может адаптироваться к изменениям в его среде или с его требованиями. Объектно-ориентированные методы проектирования и реализации могут способствовать тому, насколько эти характеристики качества программного обеспечения присутствует в данной системе.

Стоимость процессов анализа

Стоимость качества рассчитывается путем анализа затрат на соответствие и несоответствие. Цена первого показателя связана с:

  1. Расходами на профилактику. Это сумма, потраченная на обеспечение правильного соблюдения всех методов. Она включает в себя обучение командам, проверки кода и любые другие действия, связанные с QA.
  2. Затратами на оценку. Это сумма денег, потраченная на планирование всех тестовых заданий, а затем на их выполнение, например, на разработку тестовых примеров.
  3. Расходы на несоответствие. Это затраты, которые возникают из-за внутренних и внешних сбоев.

Внутренние сбои - это расходы, которые появляются, когда тестовые примеры выполняются впервые на внутреннем уровне, при этом некоторые из них терпят неудачу. Расходы возникают, когда программист должен исправить все дефекты, выявленные в его фрагменте во время модульного или компонентного тестирования.

Внешние сбои - это расходы, которые возникают, когда дефект устанавливается заказчиком, а не тестером. Эти расходы намного больше, чем те, которые появляются на внутреннем уровне. Особенно это актуально, если усиливается программный сбой.

Дисциплинированный анализ процесса

Это процессорная оценка программного продукта. Она включает в себя выявление и характеристику текущей практики, определение сильных и слабых сторон, а также способность контролировать или избегать существенные причины плохого качества товара. Аудит программ может быть трех типов:

  1. Самооценка. Проводится внутри собственного персонала организации.
  2. Оценка сторонней организации.
  3. Оценка третьей стороной.

Аудит процесса ПО выполняется в открытой общей среде с целью улучшения его показателей и с использованием программ обеспечения качества программного обеспечения. Результаты такого аудита являются конфиденциальными для организации.

Что касается сбора данных, то используются четыре метода:

  1. Стандартный перечень вопросов зрелости.
  2. Индивидуальные и групповые интервью.
  3. Обзоры документов.


Загрузка...