sonyps4.ru

Вычислить определитель матрицы разложением по строке онлайн. Определители

Второго порядка называется число, равное разности между произведением чисел, образующих главную диагональ, и произведением чисел, стоящих на побочной диагонали, можно встретить следующие обозначения определителя: ; ; ; detA (детерминант).

.

Пример:
.

Определителем матрицы третьего порядка называется число или математическое выражение, вычисляемое по следующему правилу

Наиболее простым способом вычисления определителя третьего порядка является дописывание снизу определителя двух первых строк.

В образованной таблице чисел перемножаются элементы, стоящие на главной диагонали и на диагоналях параллельных главной, знак результата произведения не изменяется. Следующим этапом вычислений является аналогичное перемножение элементов, стоящих на побочной диагонали и на параллельных ей. Знаки у результатов произведений меняются на противоположные. Затем складываем полученные шесть слагаемых.

Пример:

Разложение определителя по элементам некоторой строки (столбца).

Минором М ij элемента а ij квадратной матрицы А называется определитель, составленный из элементов матрицы А , оставшихся после вычеркивания i- ой строки и j -го столбца.

Например, минором к элементу а 21 матрицы третьего порядка
будет определитель
.

Будем говорить, что элемент а ij занимает четное место, если i+j (сумма номеров строки и столбца на пересечении которых находится данный элемент) - четное число, нечетное место, если i+j - нечетное число.

Алгебраическим дополнением А ij элемента а ij квадратной матрицы А называется выражение (или величина соответствующего минора, взятого со знаком «+», если элемент матрицы занимает четное место, и со знаком «-», если элемент занимает нечетное место).

Пример:

а 23 = 4;

- алгебраическое дополнение элемента а 22 = 1.

Теорема Лапласа . Определитель равен сумме произведений элементов некоторой строки (столбца) на соответствующие им алгебраические дополнения.

Проиллюстрируем на примере определителя третьего порядка. Вычислить определитель третьего порядка разложением по первой строке можно следующим образом

Аналогично можно вычислить определитель третьего порядка, разложив по любой строке или столбцу. Удобно раскладывать определитель по той строке (или столбцу), в которой содержится больше нулей.

Пример :

Таким образом, вычисление определителя 3-го порядка сводится к вычислению 3-х определителей второго порядка. В общем случае можно вычислить определитель квадратной матрицы n -го порядка, сводя его к вычислению n определителей (n-1 )-го порядка

Замечание. Не существует простых способов для вычисления определителей более высокого порядка, аналогичных способам вычисления определителей 2-го и 3-го порядка. Поэтому для вычисления определителей выше третьего порядка может использоваться только метод разложения.


Пример . Вычислить определитель четвертого порядка.

Разложим определитель по элементам третьей строки

Свойства определителей:

1. Определитель не изменится, если его строки заменить столбцами и наоборот.

2. При перестановке двух соседних строк (столбцов) определитель меняет знак на противоположный.

3. Определитель с двумя одинаковыми строками (столбцами) равен 0.

4. Общий множитель всех элементов некоторой строки (столбца) определителя можно вынести за знак определителя.

5. Определитель не изменится, если к элементам одного из его столбцов (строки) прибавить соответствующие элементы любого другого столбца (строки), умноженные на некоторое число.

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

Ответ.

12. Слау 3 порядка

1. Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

2. Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

3. Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

4.Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Определение1. 7 . Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1 . Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,

Определители более высоких порядков .

Определение1. 9 . Определитель n-го порядка

есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,

Теоре́ма Лапла́са - одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 - 1827), которому приписывают формулирование этой теоремы в 1772 году , хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.

олнение минора определяется следующим образом:

Справедливо следующее утверждение.

Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .

Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.

Разложение определителя по строке (столбцу) (Следствие 1)

Широко известен частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам.

Для определителя четвёртого и более высоких порядков обычно применяются иные методы вычисления, нежели использование готовых формул как для вычисления определителей второго и третьего порядков . Один из методов вычисления определителей высших порядков - использование следствия из теоремы Лапласа (саму теорему можно посмотреть, например, в книге А.Г. Куроша «Курс высшей алгебры»). Это следствие позволяет разложить определитель по элементам некоторой строки или столбца. При этом вычисление определителя n-го порядка сводится к вычислению n определителей (n-1)-го порядка. Именно поэтому такое преобразование именуют понижением порядка определителя. Например, вычисление определителя четвёртого порядка сводится к нахождению четырёх определителей третьего порядка.

Допустим, нам задана квадратная матрица n-го порядка, т.е. $A=\left(\begin{array} {cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \\ \end{array} \right)$. Вычислить определитель этой матрицы можно, разложив его по строке или по столбцу.

Зафиксируем некоторую строку, номер которой равен $i$. Тогда определитель матрицы $A_{n\times n}$ можно разложить по выбранной i-й строке, используя следующую формулу:

\begin{equation} \Delta A=\sum\limits_{j=1}^{n}a_{ij}A_{ij}=a_{i1}A_{i1}+a_{i2}A_{i2}+\ldots+a_{in}A_{in} \end{equation}

$A_{ij}$ обозначает алгебраическое дополнение элемента $a_{ij}$. Для подробной информации об этом понятии рекомендую глянуть тему Алгебраические дополнения и миноры . Запись $a_{ij}$ обозначает элемент матрицы или определителя, расположенный на пересечении i-й строки j-го столбца. Для более полной информации можно глянуть тему Матрицы. Виды матриц. Основные термины .

Допустим, мы хотим найти сумму $1^2+2^2+3^2+4^2+5^2$. Какой фразой можно охарактеризовать запись $1^2+2^2+3^2+4^2+5^2$? Можно сказать так: это сумма единицы в квадрате, двойки в квадрате, тройки в квадрате, четвёрки в квадрате и пятёрки в квадрате. А можно сказать покороче: это сумма квадратов целых чисел от 1 до 5. Чтобы выражать сумму более коротко и служит запись с помощью буквы $\sum$ (это греческая буква "сигма").

Вместо $1^2+2^2+3^2+4^2+5^2$ мы можем использовать такую запись: $\sum\limits_{i=1}^{5}i^2$. Буква $i$ именуется индексом суммирования , а числа 1 (начальное значение $i$) и 5 (конечное значение $i$) называются нижним и верхним пределами суммирования соответственно.

Расшифруем запись $\sum\limits_{i=1}^{5}i^2$ подробно. Если $i=1$, то $i^2=1^2$, поэтому первым слагаемым данной суммы будет число $1^2$:

$$ \sum\limits_{i=1}^{5}i^2=1^2+\ldots $$

Следующее целое число после единицы - двойка, поэтому подставляя $i=2$, получим: $i^2=2^2$. Сумма теперь станет такой:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+\ldots $$

После двойки следующее число - тройка, поэтому подставляя $i=3$ будем иметь: $i^2=3^2$. И сумма примет вид:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+\ldots $$

Осталось подставить лишь два числа: 4 и 5. Если подставить $i=4$, то $i^2=4^2$, а если подставить $i=5$, то $i^2=5^2$. Значения $i$ достигли верхнего предела суммирования, поэтому слагаемое $5^2$ будет последним. Итак, окончательно сумма теперь такова:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+4^2+5^2. $$

Эту сумму можно и вычислить, банально сложив числа: $\sum\limits_{i=1}^{5}i^2=55$.

Для практики попробуйте записать и вычислить следующую сумму: $\sum\limits_{k=3}^{8}(5k+2)$. Индекс суммирования здесь - буква $k$, нижний предел суммирования равен 3, а верхний предел суммирования равен 8.

$$ \sum\limits_{k=3}^{8}(5k+2)=17+22+27+32+37+42=177. $$

Аналог формулы (1) существует и для столбцов. Формула для разложения определителя по j-му столбцу выглядит следующим образом:

\begin{equation} \Delta A=\sum\limits_{i=1}^{n}a_{ij}A_{ij}=a_{1j}A_{1j}+a_{2j}A_{2j}+\ldots+a_{nj}A_{nj} \end{equation}

Правила, выраженные формулами (1) и (2), можно сформулировать так: определитель равен сумме произведений элементов некоей строки или столбца на алгебраические дополнения этих элементов. Для наглядности рассмотрим определитель четвёртого порядка, записанный в общем виде:

$$\Delta=\left| \begin{array} {cccc} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{array} \right|$$

Выберем произвольный столбец в этом определителе. Возьмём, к примеру, столбец под номером 4. Запишем формулу для разложения определителя по выбранному четвёртому столбцу:

Аналогично, выбирая, к примеру, третью строку, получим разложение по этой строке:

Пример №1

Вычислить определитель матрицы $A=\left(\begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right)$, используя разложение по первой строке и второму столбцу.

Нам нужно вычислить определитель третьего порядка $\Delta A=\left| \begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right|$. Чтобы разложить его по первой строке нужно использовать формулу . Запишем это разложение в общем виде:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}. $$

Для нашей матрицы $a_{11}=5$, $a_{12}=-4$, $a_{13}=3$. Для вычисления алгебраических дополнений $A_{11}$, $A_{12}$, $A_{13}$ станем использовать формулу №1 из темы, посвящённой . Итак, искомые алгебраические дополнения таковы:

\begin{aligned} & A_{11}=(-1)^2\cdot \left| \begin{array} {cc} 2 & -1 \\ 0 & 4 \end{array} \right|=2\cdot 4-(-1)\cdot 0=8;\\ & A_{12}=(-1)^3\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|=-(7\cdot 4-(-1)\cdot 9)=-37;\\ & A_{13}=(-1)^4\cdot \left| \begin{array} {cc} 7 & 2 \\ 9 & 0 \end{array} \right|=7\cdot 0-2\cdot 9=-18. \end{aligned}

Как мы нашли алгебраические дополнения? показать\скрыть

Подставляя все найденные значения в записанную выше формулу, получим:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}=5\cdot{8}+(-4)\cdot(-37)+3\cdot(-18)=134. $$

Как видите, процесс нахождения определителя третьего порядка мы свели к вычислению значений трёх определителей второго порядка. Иными словами, мы понизили порядок исходного определителя.

Обычно в таких простых случаях не расписывают решение подробно, отдельно находя алгебраические дополнения, а уж затем подставляя их в формулу для вычисления определителя. Чаще всего просто продолжают запись общей формулы, - до тех пор, пока не будет получен ответ. Именно так мы станем раскладывать определитель по второму столбцу.

Итак, приступим к разложению определителя по второму столбцу. Вспомогательных вычислений производить не будем, - просто продолжим формулу до получения ответа. Обратите внимание, что во втором столбце один элемент равен нулю, т.е. $a_{32}=0$. Это говорит о том, что слагаемое $a_{32}\cdot A_{32}=0\cdot A_{23}=0$. Используя формулу для разложения по второму столбцу, получим:

$$ \Delta A= a_{12}\cdot A_{12}+a_{22}\cdot A_{22}+a_{32}\cdot A_{32}=-4\cdot (-1)\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|+2\cdot \left| \begin{array} {cc} 5 & 3 \\ 9 & 4 \end{array} \right|=4\cdot 37+2\cdot (-7)=134. $$

Ответ получен. Естественно, что результат разложения по второму столбцу совпал с результатом разложения по первой строке, ибо мы раскладывали один и тот же определитель. Заметьте, что при разложении по второму столбцу мы делали меньше вычислений, так как один элемент второго столбца был равен нулю. Именно исходя из таких соображений для разложения стараются выбирать тот столбец или строку, которые содержат побольше нулей.

Ответ : $\Delta A=134$.

Пример №2

Вычислить определитель матрицы $A=\left(\begin{array} {cccc} -1 & 3 & 2 & -3\\ 4 & -2 & 5 & 1\\ -5 & 0 & -4 & 0\\ 9 & 7 & 8 & -7 \end{array} \right)$, используя разложение по выбранной строке или столбцу.

Для разложения выгоднее всего выбирать ту строку или столбец, которые содержат более всего нулей. Естественно, что в данном случае имеет смысл раскладывать по третьей строке, так как она содержит два элемента, равных нулю. Используя формулу, запишем разложение определителя по третьей строке:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}. $$

Так как $a_{31}=-5$, $a_{32}=0$, $a_{33}=-4$, $a_{34}=0$, то записанная выше формула станет такой:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}. $$

Обратимся к алгебраическим дополнениям $A_{31}$ и $A_{33}$. Для их вычисления будем использовать формулу №2 из темы, посвящённой определителям второго и третьего порядков (в этом же разделе есть подробные примеры применения данной формулы).

\begin{aligned} & A_{31}=(-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|=10;\\ & A_{33}=(-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-34. \end{aligned}

Подставляя полученные данные в формулу для определителя, будем иметь:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}=-5\cdot 10-4\cdot (-34)=86. $$

В принципе, всё решение можно записать в одну строку. Если пропустить все пояснения и промежуточные вычисления, то запись решения будет такова:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}=\\= -5 \cdot (-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|-4\cdot (-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-5\cdot 10-4\cdot (-34)=86. $$

Ответ : $\Delta A=86$.

При нахождении определителей второго, третьего порядка можно пользоваться стандартными формулами (2 - разница произведения диагональных элементов, 3 - правило треугольника). Однако для вычисления определителя четвертого, пятого порядка и старших гораздо быстрее разложить их по элементам строки или столбца, содержащего больше всего нулей и свести к расчету нескольких определителей на единицу меньшего порядка.

Схемы знаков при минорах для детерминантов 3-го - 5-го порядка приведены ниже.

Их не трудно запомнить, если знать следующие правила:
Дополнение к элементам главной диагонали идут со знаком «+» , а на параллельных диагоналям чередуются «-», «+», «-», ...
Дополнение к элементам нечетных столбцов и строк начинаются с знака «+» , а дальше чередуются «-», «+» , для парных начинаются со знака «-» , а дальше поочередно меняются «+», «-»,...
Вторым правилом пользуется большинство студентов, поскольку оно привязано к столбца или строки по которому осуществляется расписание определителя.

Перейдем к рассмотрению примеров разложения определителя и изучению особенностей этого метода.

Разложить определитель третьего порядка по элементам первой строки и второго столбца

Проводим разложение определителя по элементам первой строки

Подобным образом выполняем вычисления разложения по элементам второго столбца

Оба значения одинаковы, а значит расчеты проведены правильно. Если у Вас получится что определители полученные расписанием по строке и столбцу не совпадают - значит где-то допущена ошибка при вычислениях и нужно перечислить или найти ее.

Найти определитель четвертого порядка методом разложения

Проводим разложение по элементам третьей строки (выделена красным) так как в ней больше всего нулевых элементов.

Определители, входящие в расписание находим по правилу треугольников

Найденные значения подставляем и посчитываем

На этом примере метод разложения показал свою эффективность и простоту. Стандартные правила оказались бы слишком громоздкими в вычислениях.

Найти определитель пятого порядка методом разложения



Загрузка...