sonyps4.ru

Вложенные прерывания. Примеры прерываний

Прерывание - это изменение естественного порядка выполнения программы, которое связано с необходимостью реакции системы на работу внешних устройств, а также на ошибки и особые ситуации, возникшие при выполнении программы. При этом вызывается специальная программа - обработчик прерываний , специфическая для каждой возникшей ситуации, после выполнения которой возобновляется работа прерванной программы.

Механизм прерывания обеспечивается соответствующими аппаратно-программными средствами компьютера.

Классификация прерываний представлена на рис. 7.1 .


Рис. 7.1.

Запросы аппаратных прерываний возникают асинхронно по отношению к работе микропроцессора и связаны с работой внешних устройств.

Запрос от немаскируемых прерываний поступает на вход NMI микропроцессора и не может быть программно заблокирован. Обычно этот вход используется для запросов прерываний от схем контроля питания или неустранимых ошибок ввода/вывода.

Для запросов маскируемых прерываний используется вход INT микропроцессора. Обработка запроса прерывания по данному входу может быть заблокирована сбросом бита IF в регистре флагов микропроцессора.

Программные прерывания , строго говоря, называются исключениями или особыми случаями. Они связаны с особыми ситуациями, возникающими при выполнении программы (отсутствие страницы в оперативной памяти, нарушение защиты, переполнение ), то есть с теми ситуациями, которые программист предвидеть не может, либо с наличием в программе специальной команды INT n, которая используется программистом для вызова функций операционной системы либо BIOS , поддерживающих работу с внешними устройствами. В дальнейшем при обсуждении работы системы прерываний мы будем употреблять единый термин " прерывание " для аппаратных прерываний и исключений, если это не оговорено особо.

Программные прерывания делятся на следующие типы.

Нарушение (отказ) - особый случай, который микропроцессор может обнаружить до возникновения фактической ошибки (например, отсутствие страницы в оперативной памяти); после обработки нарушения программа выполняется с рестарта команды, приведшей к нарушению.

Ловушка - особый случай, который обнаруживается после окончания выполнения команды (например, наличие в программе команды INT n или установленный флаг TF в регистре флагов ). После обработки этого прерывания выполнение программы продолжается со следующей команды.

Авария ( выход из процесса) - столь серьезная ошибка, что некоторый контекст программы теряется и ее продолжение невозможно. Причину аварии установить нельзя, поэтому программа снимается с обработки. К авариям относятся аппаратные ошибки, а также несовместимые или недопустимые значения в системных таблицах.

Порядок обработки прерываний

Прерывания и особые случаи распознаются на границах команд, и программист может не заботиться о состоянии внутренних рабочих регистров и устройств конвейера.

Реагируя на запросы прерываний, микропроцессор должен идентифицировать его источник, сохранить минимальный контекст текущей программы и переключиться на специальную программу - обработчик прерывания. После обслуживания прерывания МП возвращается к прерванной программе, и она должна возобновиться так, как будто прерывания не было.

Обработка запросов прерываний состоит из:

  • "рефлекторных" действий процессора, которые одинаковы для всех прерываний и особых случаев и которыми программист управлять не может;
  • выполнения созданного программистом обработчика.

Для того чтобы микропроцессор мог идентифицировать источник прерывания и найти обработчик, соответствующий полученному запросу, каждому запросу прерывания присвоен свой номер (тип прерывания ).

Тип прерывания для программных прерываний вводится изнутри микропроцессора; например, прерывание по отсутствию страницы в памяти имеет тип 14. Для прерываний, вызываемых командой INT n, тип содержится в самой команде. Для маскируемых аппаратных прерываний тип вводится из контроллера приоритетных прерываний по шине данных . Немаскируемому прерыванию назначен тип 2.

Всего микропроцессор различает 256 типов прерываний . Таким образом, все они могут быть закодированы в 1 байте.

"Рефлекторные" действия микропроцессора по обработке запроса прерывания выполняются аппаратными средствами МП и включают в себя:

  • определение типа прерывания ;
  • сохранение контекста прерываемой программы (некоторой информации, которая позволит вернуться к прерванной программе и продолжить ее выполнение). Всегда автоматически сохраняются как минимум регистры EIP и CS , определяющие точку возврата в прерванную программу, и регистр флагов EFLAGS . Если вызов обработчика прерывания проводится с использованием шлюза задачи, то в памяти полностью сохраняется сегмент состояния TSS прерываемой задачи;
  • определение адреса обработчика прерывания и передача управления первой команде этого обработчика.

После этого выполняется программа - обработчик прерывания , соответствующая поступившему запросу. Эта программа пишется и размещается в памяти прикладным или системным программистом. Обработчик прерывания должен завершаться командой I RET , по которой автоматически происходит переход к продолжению выполнения прерванной программы с восстановлением ее контекста.

Для вызова обработчика прерывания микропроцессор при работе в реальном режиме использует таблицу векторов прерываний , а в защищенном режиме - таблицу дескрипторов прерываний .


Рис. 7.3.

Содержимое регистра IDTr не сохраняется в сегментах TSS и не изменяется при переключении задачи. Программы не могут обратиться к IDT , так как единственный бит TI индикатора таблицы в селекторе сегмента обеспечивает выбор только между таблицами GDT и LDT .

Максимальный предел таблицы дескрипторов прерываний составляет 256*8 - 1 = 2047.

Можно определить предел меньшим, но это не рекомендуется. Если происходит обращение к дескриптору вне пределов IDT , процессор переходит в режим отключения до получения сигнала по входу NMI или сброса.

В IDT могут храниться только дескрипторы следующих типов:

  • шлюз ловушки ,
  • шлюз прерывания, шлюз задачи.
Наименование параметра Значение
Тема статьи: Прерывания.
Рубрика (тематическая категория) Программирование

Сторожевые таймеры.

Часто электрические помехи, производимые окружающим оборудованием, вызывают обращение микроконтроллера по неправильному адресу, после чего его поведение становится непредсказуемым (микроконтроллер ʼʼидет в раз­носʼʼ). Чтобы отслеживать такие ситуации в состав микроконтроллера часто включают сторожевые таймеры.

Это устройство вызывает сброс микроконтроллера, в случае если его содержимое не будет обновлено в течение определœенного промежутка времени (обычно от десятков миллисекунд до нескольких секунд). В случае если изменение содержимо­го программного счетчика не соответствует заданной программе, то команда модификации сторожевого таймера не будет выполнена. В этом случае сторо­жевой таймер производит сброс микроконтроллера, устанавливая его в ис­ходное состояние.

Многие разработчики не используют сторожевые таймеры в своих прило­жениях, так как не видят крайне важно сти их применения для борьбы с влия­нием электрических помех, к примеру, при размещении микроконтроллера в электронно-лучевом дисплее вблизи от трансформатора, обеспечивающего гашение обратного хода луча, или рядом с катушками зажигания в автомо­биле. В современной электронике вероятность возникновения электрических нарушений незначительна, хотя они иногда возникают в ситуациях, похо­жих на перечисленные выше.

Не рекомендуется использовать сторожевой таймер для маскирования программных проблем. Хотя данный таймер может уменьшить вероятность про­граммных ошибок, однако вряд ли он обеспечит исключение всœех возмож­ных причин их возникновения. Вместо того, чтобы надеяться на предотвра­щение программных сбоев аппаратными средствами, лучше более тщательно протестировать программное обеспечение в различных ситуациях.

Многие пользователи считают, что прерывания - это та часть аппаратного обеспечения, которую лучше оставить в покое, так как их использование требует превосходного знания процессора для разработки программы обра­ботки прерывания. В противном случае при возникновении прерывания сис­тема ʼʼзасыпаетʼʼ или ʼʼидет вразносʼʼ. Такое чувство обычно появляется у раз­работчика после опыта работы с прерываниями для персонального компьютера, который имеет ряд особенностей, усложняющих создание об­работчика прерываний. Многие из этих проблем не имеют места в оборудова­нии, реализованном на базе микроконтроллеров. Использование в данном оборудовании прерываний может существенно упростить его разработку и применение.

В случае если вы никогда не имели дело с прерываниями, то у вас возникнет вопрос - что это такое? В компьютерной системе прерывание - это запуск специальной подпрограммы (называемой ʼʼобработчиком прерыванияʼʼ или ʼʼпрограммой обслуживания прерыванияʼʼ), который вызывается сигналом аппаратуры. На время выполнения этой подпрограммы реализация текущей программы останавливается. Термин ʼʼзапрос на прерываниеʼʼ (interrupt request) используется потому, что иногда программа отказывается подтвердить пре­рывание и выполнить обработчик прерывания немедленно (рис 2.19).

Прерывания в компьютерной системе аналогичны прерываниям в повсœед­невной жизни. Классический пример такого прерывания - телœефонный зво­нок во время просмотра телœевизионной передачи. Когда звонит телœефон, у вас есть три возможности. Первый - проигнорировать звонок. Второй - отве­тить на звонок, но сказать, что вы перезвоните позже. Третий - ответить на звонок, отложив всœе текущие дела. В компьютерной системе также имеются три подобных ответа͵ которые бывают использованы в качестве реакции на внешний аппаратный запрос.

Первый возможный ответ - ʼʼне реагировать на прерывание, пока не за­вершится выполнение текущей задачиʼʼ - реализуется путем запрещения (маскирования) обслуживания запроса прерывания. После завершения задачи возможен один из двух вариантов: сброс маски и разрешение обслуживания, что приведет к вызову обработчика прерывания, или анализ значения битов (ʼʼполлингʼʼ). указывающих на поступление запросов прерывания и непос­редственное выполнение программы обслуживания без вызова обработчика прерывания. Такой метод обработки прерываний используется, когда требу­ется обеспечить заданное время выполнения основной программы, так как любое прерывание может нарушить реализацию крайне важно го интерфейса.

Рис. 2.18 - Выполнение прерывания.

Не рекомендуется долгое маскирование прерываний, так как в течение этого времени может произойти наложение нескольких событий, вызываю­щих прерывания, а распознаваться будет только одно. Допустимая продолжи­тельность маскирования зависит от конкретного применения микроконтрол­лера, типа и частоты следования таких событий. Не рекомендуется запрещать прерывания на время большее, чем половина минимального ожидаемого периода следования событий, запрашивающих прерывания.

Обработчик прерывания всœегда обеспечивает следующую последователь­ность действий:

2. Сбросить контроллер прерываний и оборудование, вызвавшее запрос.

3. Обработать данные.

4. Восстановить содержимое регистров контекста.

5. Вернуться к прерванной программе.

Регистры контекста - это регистры, определяющие текущее состояние выполнения основной программы. Обычно к их числу относятся программ­ный счетчик, регистры состояния и аккумуляторы. Другие регистры процессора, такие как индексные регистры, бывают использованы в процессе обработки прерывания, в связи с этим их содержимое также крайне важно сохра­нить. Все остальные регистры являются специфическими для конкретного микроконтроллера и его применения.

После сброса в исходное состояние контроллер прерываний готов вос­принимать следующий запрос, а оборудование, вызывающее прерывание, готово посылать запрос, когда возникают соответствующие причины. В случае если поступит новый запрос прерывания, то регистр маскирования прерываний процессора предотвратит обработку прерывания, но регистр состояния пре­рываний зафиксирует данный запрос, который будет ожидать своего обслужива­ния. После завершения обработки текущего прерывания маска прерываний будет сброшена, и вновь поступивший запрос поступает на обработку.

Вложенные прерывания сложны для реализации некоторыми типами мик­роконтроллеров, которые не имеют стека. Эти прерывания могут также выз­вать проблемы, связанные с переполнением стека. Проблема переполнения актуальна для микроконтроллеров из-за ограниченного объёма их памяти данных и стека: последовательность вложенных прерываний может привести к тому, что в стек будет помещено больше данных, чем это допустимо.

Наконец, прерывание обработано. Второй пример с телœевизором показы­вает, что можно быстро отреагировать на запрос прерывания, приняв необ­ходимые данные, которые будут затем использованы после решения теку­щей задачи. В микроконтроллерах это реализуется путем сохранения поступивших данных в массиве памяти и последующей их обработки, когда выполнение исходной программы будет завершено. Такой способ обслужива­ния является хорошим компромиссом между немедленной полной обработ­кой прерывания, которая может потребовать много времени, и игнорирова­нием прерывания, что может привести к потере информации о событии, вызвавшем прерывание.

Восстановление регистров контекста и выполнение команды возврата из прерывания переводит процессор в состояние, в котором он находился до возникновения прерывания.

Рассмотрим, что происходит с содержимым различных регистров при обработке прерывания. Содержимое регистра состояния обычно автомати­чески сохраняется вместе с содержимым программного счетчика перед обра­боткой прерывания. Это избавляет от крайне важно сти сохранять его в памяти программными средствами с помощью команд пересылки, а затем восста­навливать при возврате к исходной программе. При этом такое автоматическое сохранение реализуется не во всœех типах микроконтроллеров, в связи с этим орга­низации обработки прерываний следует уделить особое внимание.

В случае если содержимое регистра состояния сохраняется перед началом выпол­нения обработчика прерывания, то по команде возврата производится его автоматическое восстановление.

В случае если содержимое других регистров процессора изменяется при выполне­нии обслуживания прерывания, то оно также должно быть сохранено в памяти до изменения и восстановлено перед возвратом в основную программу. Обычно принято сохранять всœе регистры процессора, чтобы избежать не­предсказуемых ошибок, которые очень трудно локализовать.

Адрес, который загружается в программный счетчик при переходе к обра­ботчику прерывания, принято называть ʼʼвектор прерыванияʼʼ. Существует несколь­ко типов векторов. Адрес, который загружается в программный счетчик при запуске микроконтроллера (reset) принято называть ʼʼвектор сбросаʼʼ. Для различных прерываний бывают заданы разные вектора, что избавляет программу обслуживания от крайне важно сти определять причину прерывания. Использо­вание различными прерываниями одного вектора обычно не вызывает про­блем при работе микроконтроллеров, так как чаще всœего микроконтроллер исполняет одну единственную программу. Этим микроконтроллер отличается от персонального компьютера, в процессе эксплуатации которого могут до­бавляться различные источники прерываний. (В случае если вы когда-либо подклю­чали два устройства к портам СОМ1 и COM3, то вы представляете, о чем идет речь). В микроконтроллере, где аппаратная часть хорошо известна, не должно возникнуть каких-либо проблем при совместном использовании век­торов прерываний.

Последнее, что осталось рассмотреть, - это программные прерывания. Существуют процессорные команды, которые бывают использованы для имитации аппаратных прерываний. Наиболее очевидное использование этих команд - это вызов системных подпрограмм, которые располагаются в про­извольном месте памяти, или требуют для обращения к ним межсегментных переходов. Эта возможность реализована в микропроцессорах семейства Intel i86 и используется в базовой системе ввода-вывода BIOS (Basic Input/Output System) и операционной системе DOS персональных компьютеров для вызо­ва системных подпрограмм без крайне важно сти фиксирования точки входа. Вместо этого используются различные вектора прерываний, выбирающие команду, которая должна выполняться, когда происходит такое программ­ное прерывание.

Возможно после прочтения этой главы механизм прерываний станет для Вас более понятным или, наоборот. Вы только еще больше запутаетесь. При описании каждого микроконтроллера будет показано, как использование прерываний может упростить его применение.

Прерывания. - понятие и виды. Классификация и особенности категории "Прерывания." 2017, 2018.

Важнейшими характеристиками системы прерываний является глубина прерываний и приоритет. В ЭВМ существует одноуровневая и многоуровневая система прерываний. В одноуровневых системах нет реакции при обработке прерываний на сигналы других поступающих прерываний. Удовлетворение запросов на прерывание в таких системах осуществляется только после завершения обработки ранее возникшего прерывания. В современных ПК используются многоуровневые системы, допускающие прерывания различной глубины. Глубина прерываний - это максимальное число программ ISR, которые могут прерывать друг друга. При этом, если глубина прерываний п, то может быть прервано п подпрограмм. Глубина возможных прерываний зависит от класса решаемых задач и определяется организацией очередности обработки прерываний. Одновременно поступившие запросы на прерывания на регистр прерываний МП, обрабатываются по принципу приоритетности. В первую очередь обслуживаются прерывания с наивысшим приоритетом. При поступлении запросов на прерывание соответствующий триггер в регистре прерываний устанавливается в 1. Перед завершением выполнения очередной команды МП опрашивает регистр прерываний. Очередность реализации запросов на прерывание устанавливается в порядке приоритета, заранее присвоенного каждому типу прерывания. Присвоение приоритета представляет собой сложную задачу, при решении которой необходимо учитывать важность и срочность обслуживания тех или иных прерываний. Обычно наивысшим приоритетом обладают прерывания от схем управления энергопотреблением и по машинной ошибке.

Прерывание подпрограмм ISR называется вложением прерываний. Для организации вложенных прерываний в каждой подпрограмме обслуживания прерываний необходимо выполнить:

1. разрешить прерывание по команде EI

2. временно запомнить приоритет прерванной программы

3. загрузить в схему приоритетных прерываний новый текущий приоритет

4. обслужить это прерывание

5. восстановить прежний приоритет

6. восстановить прерванную программу (командой IRET)

Аппаратные прерывания:

Внутренние (от процессора и сопроцессора)

Внешние:

Маскируемые

Немаскируемые

Программно-вызываемые прерывания

К внутренним прерываниям можно отнести и программно-вызываемые пре­рывания. Внутренние прерывания МП генерируются при возникновении особых условий при выполнении текущей команды (пример: деление на нуль переполнение разрядной сетки и т.п.).

Програмно-вызываемые прерывания выполняются под действием команды INT, и в этом случае действия МП аналогичны вызову программы ISR, т.е. сохранение в стеке адреса возврата, передача управления по указанному ад­ресу, но имеются и некоторые отличия:

A) выполняется прерывание, помещенное в стек и в регистре флагов сбрасы­вается в 0 бит IF (разрешения обработки прерываний).

Б) вместо адреса вызываемой подпрограммы аргументом вызова является номер вектора прерываний.

B) по окончании выполнения процедуры програмно-вызываемого прерыва­ния процессор извлекает из стека кроме адреса возврата и сохраненное зна­чение регистра флагов. Программо-вызываемые прерывания позволяют лег­ко и быстро вызывать процедуры из любого сегмента памяти, не применяядальних вызовов. Например, программное прерывание INT3 традиционно используется в целях отладки программ для создания точки останова и оно вызывается однобайтной инструкцией.

Сторожевые таймеры.

Часто электрические помехи, производимые окружающим оборудованием, вызывают обращение микроконтроллера по неправильному адресу, после чего его поведение становится непредсказуемым (микроконтроллер «идет в раз­нос»). Чтобы отслеживать такие ситуации в состав микроконтроллера часто включают сторожевые таймеры.

Это устройство вызывает сброс микроконтроллера, если его содержимое не будет обновлено в течение определенного промежутка времени (обычно от десятков миллисекунд до нескольких секунд). Если изменение содержимо­го программного счетчика не соответствует заданной программе, то команда модификации сторожевого таймера не будет выполнена. В этом случае сторо­жевой таймер производит сброс микроконтроллера, устанавливая его в ис­ходное состояние.

Многие разработчики не используют сторожевые таймеры в своих прило­жениях, так как не видят необходимости их применения для борьбы с влия­нием электрических помех, например, при размещении микроконтроллера в электронно-лучевом дисплее вблизи от трансформатора, обеспечивающего гашение обратного хода луча, или рядом с катушками зажигания в автомо­биле. В современной электронике вероятность возникновения электрических нарушений незначительна, хотя они иногда возникают в ситуациях, похо­жих на перечисленные выше.

Не рекомендуется использовать сторожевой таймер для маскирования программных проблем. Хотя этот таймер может уменьшить вероятность про­граммных ошибок, однако вряд ли он обеспечит исключение всех возмож­ных причин их возникновения. Вместо того, чтобы надеяться на предотвра­щение программных сбоев аппаратными средствами, лучше более тщательно протестировать программное обеспечение в различных ситуациях.

Многие пользователи считают, что прерывания - это та часть аппаратного обеспечения, которую лучше оставить в покое, так как их использование требует превосходного знания процессора для разработки программы обра­ботки прерывания. В противном случае при возникновении прерывания сис­тема «засыпает» или «идет вразнос». Такое чувство обычно появляется у раз­работчика после опыта работы с прерываниями для персонального компьютера, который имеет ряд особенностей, усложняющих создание об­работчика прерываний. Многие из этих проблем не имеют места в оборудова­нии, реализованном на базе микроконтроллеров. Использование в данном оборудовании прерываний может существенно упростить его разработку и применение.

Если вы никогда не имели дело с прерываниями, то у вас возникнет вопрос - что это такое? В компьютерной системе прерывание - это запуск специальной подпрограммы (называемой «обработчиком прерывания» или «программой обслуживания прерывания»), который вызывается сигналом аппаратуры. На время выполнения этой подпрограммы реализация текущей программы останавливается. Термин «запрос на прерывание» (interrupt request) используется потому, что иногда программа отказывается подтвердить пре­рывание и выполнить обработчик прерывания немедленно (рис 2.19).


Прерывания в компьютерной системе аналогичны прерываниям в повсед­невной жизни. Классический пример такого прерывания - телефонный зво­нок во время просмотра телевизионной передачи. Когда звонит телефон, у вас есть три возможности. Первый - проигнорировать звонок. Второй - отве­тить на звонок, но сказать, что вы перезвоните позже. Третий - ответить на звонок, отложив все текущие дела. В компьютерной системе также имеются три подобных ответа, которые могут быть использованы в качестве реакции на внешний аппаратный запрос.

Первый возможный ответ - «не реагировать на прерывание, пока не за­вершится выполнение текущей задачи» - реализуется путем запрещения (маскирования) обслуживания запроса прерывания. После завершения задачи возможен один из двух вариантов: сброс маски и разрешение обслуживания, что приведет к вызову обработчика прерывания, или анализ значения битов («поллинг»). указывающих на поступление запросов прерывания и непос­редственное выполнение программы обслуживания без вызова обработчика прерывания. Такой метод обработки прерываний используется, когда требу­ется обеспечить заданное время выполнения основной программы, так как любое прерывание может нарушить реализацию необходимого интерфейса.

Рис. 2.18 - Выполнение прерывания.

Не рекомендуется длительное маскирование прерываний, так как в течение этого времени может произойти наложение нескольких событий, вызываю­щих прерывания, а распознаваться будет только одно. Допустимая продолжи­тельность маскирования зависит от конкретного применения микроконтрол­лера, типа и частоты следования таких событий. Не рекомендуется запрещать прерывания на время большее, чем половина минимального ожидаемого периода следования событий, запрашивающих прерывания.

Обработчик прерывания всегда обеспечивает следующую последователь­ность действий:

2. Сбросить контроллер прерываний и оборудование, вызвавшее запрос.

3. Обработать данные.

4. Восстановить содержимое регистров контекста.

5. Вернуться к прерванной программе.

Регистры контекста - это регистры, определяющие текущее состояние выполнения основной программы. Обычно к их числу относятся программ­ный счетчик, регистры состояния и аккумуляторы. Другие регистры процессора, такие как индексные регистры, могут быть использованы в процессе обработки прерывания, поэтому их содержимое также необходимо сохра­нить. Все остальные регистры являются специфическими для конкретного микроконтроллера и его применения.

После сброса в исходное состояние контроллер прерываний готов вос­принимать следующий запрос, а оборудование, вызывающее прерывание, готово посылать запрос, когда возникают соответствующие причины. Если поступит новый запрос прерывания, то регистр маскирования прерываний процессора предотвратит обработку прерывания, но регистр состояния пре­рываний зафиксирует этот запрос, который будет ожидать своего обслужива­ния. После завершения обработки текущего прерывания маска прерываний будет сброшена, и вновь поступивший запрос поступает на обработку.

Вложенные прерывания сложны для реализации некоторыми типами мик­роконтроллеров, которые не имеют стека. Эти прерывания могут также выз­вать проблемы, связанные с переполнением стека. Проблема переполнения актуальна для микроконтроллеров из-за ограниченного объема их памяти данных и стека: последовательность вложенных прерываний может привести к тому, что в стек будет помещено больше данных, чем это допустимо.

Наконец, прерывание обработано. Второй пример с телевизором показы­вает, что можно быстро отреагировать на запрос прерывания, приняв необ­ходимые данные, которые будут затем использованы после решения теку­щей задачи. В микроконтроллерах это реализуется путем сохранения поступивших данных в массиве памяти и последующей их обработки, когда выполнение исходной программы будет завершено. Такой способ обслужива­ния является хорошим компромиссом между немедленной полной обработ­кой прерывания, которая может потребовать много времени, и игнорирова­нием прерывания, что может привести к потере информации о событии, вызвавшем прерывание.

Восстановление регистров контекста и выполнение команды возврата из прерывания переводит процессор в состояние, в котором он находился до возникновения прерывания.

Рассмотрим, что происходит с содержимым различных регистров при обработке прерывания. Содержимое регистра состояния обычно автомати­чески сохраняется вместе с содержимым программного счетчика перед обра­боткой прерывания. Это избавляет от необходимости сохранять его в памяти программными средствами с помощью команд пересылки, а затем восста­навливать при возврате к исходной программе. Однако такое автоматическое сохранение реализуется не во всех типах микроконтроллеров, поэтому орга­низации обработки прерываний следует уделить особое внимание.

Если содержимое регистра состояния сохраняется перед началом выпол­нения обработчика прерывания, то по команде возврата производится его автоматическое восстановление.

Если содержимое других регистров процессора изменяется при выполне­нии обслуживания прерывания, то оно также должно быть сохранено в памяти до изменения и восстановлено перед возвратом в основную программу. Обычно принято сохранять все регистры процессора, чтобы избежать не­предсказуемых ошибок, которые очень трудно локализовать.

Адрес, который загружается в программный счетчик при переходе к обра­ботчику прерывания, называется «вектор прерывания». Существует несколь­ко типов векторов. Адрес, который загружается в программный счетчик при запуске микроконтроллера (reset) называется «вектор сброса». Для различных прерываний могут быть заданы разные вектора, что избавляет программу обслуживания от необходимости определять причину прерывания. Использо­вание различными прерываниями одного вектора обычно не вызывает про­блем при работе микроконтроллеров, так как чаще всего микроконтроллер исполняет одну единственную программу. Этим микроконтроллер отличается от персонального компьютера, в процессе эксплуатации которого могут до­бавляться различные источники прерываний. (Если вы когда-либо подклю­чали два устройства к портам СОМ1 и COM3, то вы представляете, о чем идет речь). В микроконтроллере, где аппаратная часть хорошо известна, не должно возникнуть каких-либо проблем при совместном использовании век­торов прерываний.

Последнее, что осталось рассмотреть, - это программные прерывания. Существуют процессорные команды, которые могут быть использованы для имитации аппаратных прерываний. Наиболее очевидное использование этих команд - это вызов системных подпрограмм, которые располагаются в про­извольном месте памяти, или требуют для обращения к ним межсегментных переходов. Эта возможность реализована в микропроцессорах семейства Intel i86 и используется в базовой системе ввода-вывода BIOS (Basic Input/Output System) и операционной системе DOS персональных компьютеров для вызо­ва системных подпрограмм без необходимости фиксирования точки входа. Вместо этого используются различные вектора прерываний, выбирающие команду, которая должна выполняться, когда происходит такое программ­ное прерывание.

Возможно после прочтения этой главы механизм прерываний станет для Вас более понятным или, наоборот. Вы только еще больше запутаетесь. При описании каждого микроконтроллера будет показано, как использование прерываний может упростить его применение.



Загрузка...