sonyps4.ru

Супер емкие аккумуляторы. Перспективные технологии для аккумуляторов будущего

IKEA и тут опережает всех, Panasonic Eneloop оказываются совсем не такими дорогими, если их покупать через интернет, а Fujitsu, производящиеся на том же заводе по той же технологии, ещё дешевле.

Для большинства аккумуляторов производители указывают 1000 циклов заряд-разряд, некоторые производители вообще не указывают число циклов (Camelion, Turnigy, GP, Varta). Некоторые аккумуляторы имеют только 500 гарантированных циклов (IKEA LADDA 2000 LSD, Energizer PreCharged 2400, Panasonic Eneloop Pro 2450 LSD, Fujitsu 2550 LSD, IKEA LADDA 750 LSD, Energizer PreCharged 800, Panasonic 750 LSD, Fujitsu 900 LSD, Panasonic Eneloop Pro 900 LSD).
Для AA Panasonic Eneloop 1900 LSD, AAA Panasonic Eneloop 750 LSD, AA Fujitsu 1900 LSD, AAA Fujitsu 800 LSD производители гарантирует 2100 циклов.
Максимальное количество циклов - 3000 гарантируется для аккумуляторов низкой ёмкости AA Panasonic Eneloop Lite 950 LSD и AAA Panasonic Eneloop Lite 550 LSD.

Выводы:

1. Максимальная достижимая ёмкость для NiMh аккумуляторов AA - 2550 mAh, для AAA - 1060 mAh. Все аккумуляторы, на которых написано 2600, 2700, 2800 mAh и более в реальности имеют меньшую ёмкость.
2. Все аккумуляторы AA известных производителей от 950 mAh до 2450 mAh имеют реальную ёмкость не менее 97% от указанной, все аккумуляторы AAА известных производителей от 550 mAh до 1100 mAh имеют реальную ёмкость не менее 94% от указанной.
3. NiMh аккумуляторы в отличие от батареек почти не снижают количество отдаваемой энергии при больших токах разряда.
4. LSD аккумуляторы почти не отличаются от обычных. И те и другие теряют за месяц 4-20% заряда.
5. Новые LSD аккумуляторы обычно оказываются заряжены на 70%.

Всю информацию о протестированных аккумуляторах можно посмотреть в файле excel: http://nadezhin.ru/lj/ljfiles/accu_ammo1.xls. Там есть данные по тестированию всех экземпляров аккумуляторов, ёмкость в ватт-часах, вес и начальное напряжение, штрихкоды, оптовые и розничные цены в рублях, цены в долларах и евро, страны происхождения, результаты всех тестирований, включая ёмкость после недели и месяца хранения.

Фотографии упаковок всех аккумуляторов можно скачать одним архивом: http://nadezhin.ru/lj/ljfiles/accu.rar

Аккумуляторы для тестирования предоставлены производителями и магазинами:

Ansmann, Duracell, Energizer, Varta, Robiton, GP, Panasonic - оптовой компанией Источник Бэттэрис http://www.istochnik.ru
Camelion, Duracell, Energizer - оптовой компанией Энергосистемы и Технологии http://e-s-t.ru
Ikea - компанией Ikea http://www.ikea.ru
Navigator, Panasonic, Varta - компанией Battery Team http://batteryteam.ru
Космос - группой компаний «Космоc» http://kosmos.ru
Fujitsu - российским представительством компании Fujitsu http://fujitsu-battery.ru
Maha Powerex, IMEDION, Fujitsu, Panasonic Eneloop - интернет-магазином http://ru.nkon.nl
Turnigy - интернет-магазином HobbyKing http://www.hobbyking.com

Я потратил четыре месяца на тестирование и три дня на написание этой статьи. Надеюсь, вам это пригодится.

© 2015, Алексей Надёжин

В своём блоге я пишу о технике каждый день. Я провожу тестирования, делаю обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё делаю репортажи из интересных мест, публикую заметки о музыке, кино и интересных событиях. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

А ещё я занимаюсь тестированием светодиодных ламп, все результаты моих тестов смотрите на LampTest.ru

Экология потребления.Наука и техника: Будущее электротранспорта во многом зависит от совершенствования аккумуляторов - они должны весить меньше, заряжаться быстрее и при этом производить больше энергии.

Будущее электротранспорта во многом зависит от совершенствования аккумуляторов - они должны весить меньше, заряжаться быстрее и при этом производить больше энергии. Ученые уже добились некоторых результатов. Команда инженеров создала литий-кислородные батареи, которые не растрачивают энергию впустую и могут служить десятилетиями. А австралийский ученый представил ионистор на основе графена, который может заряжаться миллион раз без потери эффективности.

Литий-кислородные аккумуляторы мало весят и производят много энергии и могли бы стать идеальными комплектующими для электромобилей. Но у таких батарей есть существенный недостаток - они быстро изнашиваются и выделяют слишком много энергии в виде тепла впустую. Новая разработка ученых из МТИ, Аргонской национальной лаборатории и Пекинского университета обещает решить эту проблему.

Созданные командой инженеров литий-кислородные аккумуляторы используют наночастицы, в которых содержится литий и кислород. При этом кислород при изменении состояний сохраняется внутри частицы и не возвращается в газовую фазу. Это отличает разработку от литий-воздушных батарей, которые получают кислород из воздуха и выпускают его в атмосферу во время обратной реакции. Новый подход позволяет сократить потерю энергии (величина электрического напряжения сокращается почти в 5 раз) и увеличить срок службы батареи.

Литий-кислородная технология также хорошо адаптирована к реальным условиям, в отличие от литий-воздушных систем, которые портятся при контакте с влагой и CO2. Кроме того, аккумуляторы на литии и кислороде защищены от избыточной зарядки - как только энергии становится слишком много, батарея переключается на другой тип реакции.

Ученые провели 120 циклов заряда-разряда, при этом производительность снизилась лишь на 2%.

Пока что ученые создали лишь опытный образец аккумулятора, но в течение года они намерены разработать прототип. Для этого не нужны дорогие материалы, а производство во многом схоже с производством традиционных литий-ионных батарей. Если проект будет реализован, то в ближайшем будущем электромобили будут сохранять в два раза больше энергии при той же массе.

Инженер из Технологического университета Суинберна в Австралии решил другую проблему аккумуляторов - скорость их подзарядки. Разработанный им ионистор заряжается практически мгновенно и может использоваться в течение многих лет без потери эффективности.

Хан Линь использовал графен - один из самых прочных материалов на сегодняшний день. За счет структуры, напоминающей соты, графен обладает большой площадью поверхности для хранения энергии. Ученый напечатал графеновые пластины на 3D-принтере - такой способ производства также позволяет сократить затраты и нарастить масштабы.

Созданный ученым ионистор производит столько же энергии на килограмм веса, сколько и литий-ионный аккумуляторы, но заряжается за несколько секунд. При этом вместо лития в нем используется графен, который стоит намного дешевле. По словам Хана Линя, ионистор может проходить миллионы циклов зарядки без потери качества.

Сфера производства аккумуляторов не стоит на месте. Братья Крайзель из Австрии создали новый тип батарей, которые весят почти в два раза меньше аккумуляторов в Tesla Model S.

Норвежские ученые из Университета Осло изобрели аккумулятор, который можно полностью . Однако их разработка предназначена для городского общественного транспорта, который регулярно делает остановки - на каждой из них автобус будет подзаряжаться и энергии хватит, чтобы добраться до следующей остановки.

Ученые Калифорнийского университета в Ирвайне приблизились к созданию вечной батареи. Они разработали аккумулятор из нанопроволоки, который можно перезаряжать сотни тысяч раз.

А инженеры Университета Райса сумели создать , работающий при температуре 150 градусов Цельсия без потери эффективности. опубликовано

Хотели бы вы иметь смартфон с аккумулятором, от которого можно «прикурить» автомобиль? И при этом, чтобы он заряжался на считанные секунды? Фантастика - скажете вы. Тем не менее, учёные из Университета Иллинойса опубликовали свою работу, которая дарит нам надежду увидеть такие супербатареи в будущем.

Это переворачивает представление о батареях. Она может выдать гораздо больше мощности, чем кто-либо может представить. В последние десятилетия электроника стала компактнее. «Думающие» части компьютеров так же стали меньше. А батареи - значительно отстают. Наша микротехнология может всё это изменить. Теперь источник питания такой же высокопроизводительный, как и всё остальное.


С современными источниками питания пользователю приходится выбирать между мощностью и ёмкостью. Для некоторых применений нужно большое количество энергии(например, при передаче радиосигнала на большие расстояния). Конденсаторы способны быстро её высвобождать, но при этом запасая её лишь в небольших количествах. Для других задач, вроде длительного прослушивания радио, нужна большая ёмкость источника, которую имеют, например, топливные элементы и батареи. Но они отдают электроэнергию довольно медленно.

Батареи, созданные командой под руководством Уильяма Кинга(William P. King), позволяют создавать бескомпромиссные аккумуляторы, выдающие высокую мощность и при этом обладающие высокой ёмкостью. Причем, с помощью несложной подстройки производственного процесса, возможно варьировать соотношение этих параметров.

Как известно, эффективность батареи напрямую зависит от площади поверхности её электродов. Команде удалось значительно её увеличить с помощью следующего технологического процесса. Сначала на стеклянную подложку наносится слой полистирола. Затем в эту структуру «вводится» электролитический никель, служащий основой будущих катодов, а шарики полистирола вытравливаются. На получившуюся губчатую поверхность гальваническим способом наносятся никель-олово - на анод и диоксид марганца - на катод. Вся суть процесса наглядно представлена на следующей иллюстрации:

В конечном итоге получается структура с огромной площадью поверхности, освобождая больше свободного пространства для протекания химических реакций.

Учёным удалось создать батарейку формата «microbattery». На графике ниже представлено её сравнение с обычной батарейкой Sony CR1620:

С такими батареями возможна, например, передача радиосигнала на расстояние в 30 раз большее, чем с обычными источниками питания или сокращение размера аккумулятора в 30 раз. Кроме того, батареи способны заряжаться в 1000 раз быстрее современных. Впечатляет, не правда ли?

В настоящий момент учёные работают над интеграцией своих батарей с другими электронными компонентами, а так же разрабатывают процесс производства, который позволит запустить их в серию по приемлемой цене.

Каждый год количество устройств в мире, которые работают от аккумуляторных батарей, неуклонно возрастает. Не секрет, что самым слабым звеном современных устройств являются именно аккумуляторы. Их приходиться регулярно подзаряжать, они обладают не такой большой емкостью. Существующие аккумуляторные батареи с трудом позволяют добиваться автономной работы планшета или мобильного компьютера в течение нескольких дней.

Поэтому производители электромобилей, планшетов и смартфонов сегодня заняты поиском возможностей сохранения значительных объемов энергии в более компактных объемах самого аккумулятора. Несмотря на разные требования, предъявляемые к батареям для электромобилей и мобильных устройств, между ними можно легко провести параллели. В частности, известный электрокар Tesla Roadster питается от литий-ионной батареи, разработанной специально для ноутбуков. Правда, для обеспечения электроэнергией спортивного автомобиля инженерам пришлось использовать более шести тысяч таких элементов питания одновременно.

Идет ли речь об электромобиле или мобильных устройствах, универсальные требования к аккумулятору будущего очевидны – он должен быть меньше, легче и накапливать значительно больше энергии. Какие перспективные разработки в этой области могут удовлетворить данные требования?

Литий-ионные и литиево-полимерные батареи

Литий-ионный аккумулятор фотоаппарата

На сегодняшний день в мобильных устройствах наибольшее распространение получили литий-ионные и литиево-полимерные батареи. Что касается литий-ионных аккумуляторов (Li-Ion), то они производятся еще с начала 90-х годов. Их главное преимущество – достаточно высокая энергетическая плотность, то есть способность сохранять определенный объем энергии на одну единицу массы. Кроме того, в таких батареях отсутствует пресловутый «эффект памяти» и имеется сравнительно низкий саморазряд.

Использование лития вполне обоснованно, ведь этот элемент обладает высоким электрохимическим потенциалом. Недостатком всех литиево-ионных батарей, коих на самом деле в настоящее время насчитывается большое количество видов, является достаточно быстрое старение аккумулятора, то есть резкое снижение характеристик при хранении или длительном использовании батареи. К тому же, потенциал емкости современных литий-ионных батарей, судя по всему, уже практически исчерпан.

Дальнейшим развитием литий-ионной технологии являются литиево-полимерные источники питания (Li-Pol). В них вместо жидкого электролита используется твердый материал. В сравнении со своим предшественником, литиево-полимерные батареи имеют более высокую энергетическую плотность. Вдобавок, теперь стало возможным производить батареи практически в любой форме (литий-ионная технология требовала только цилиндрической или прямоугольной формы корпуса). Такие батареи обладают небольшими габаритами, что позволяет с успехом применять их в различных мобильных устройствах.

Однако появление литиево-полимерных батарей кардинальным образом не изменило ситуацию, в частности, потому, что такие батареи не способны отдавать большие токи разряда, а их удельная емкость все же недостаточна, чтобы избавить человечество от необходимости постоянной подзарядки мобильных устройств. Плюс ко всему, литиево-полимерные аккумуляторы довольно «капризны» в эксплуатации, они имеют недостаточную прочность и склонность к возгоранию.

Перспективные технологии

В последние годы ученые и исследователи в различных странах активно работают над созданием более совершенных технологий аккумуляторных батарей, способных уже в ближайшем будущем прийти на смену существующим. В этом плане можно выделить несколько наиболее перспективных направлений:

— Литий-серные батареи (Li-S)

Литий-серный аккумулятор – перспективная технология, энергоемкость подобной батареи в два раза выше, чем у литий-ионных. Но в теории она может быть еще выше. В таком источнике питания используется жидкий катод с содержанием серы, при этом он отделен от электролита особой мембраной. Именно за счет взаимодействия литиевого анода и серосодержащего катода была существенно увеличена удельная емкость. Первый образец подобного аккумулятора появился еще в 2004 году. С того момента был достигнут определенный прогресс, благодаря чему усовершенствованный литий-серный аккумулятор способен выдерживать полторы тысячи циклов полной зарядки-разрядки без серьезных потерь в емкости.

К преимуществам данного аккумулятора также можно отнести возможность применения в широком диапазоне температур, отсутствие необходимости в использовании усиленных компонентов защиты и сравнительно низкую себестоимость. Интересный факт – именно благодаря применению такого аккумулятора в 2008 году был поставлен рекорд по продолжительности полета на воздушном судне на солнечных батареях. Но для массового выпуска литиево-серного аккумулятора ученым еще придется решить две основные проблемы. Требуется найти эффективный способ утилизации серы, а также обеспечить стабильную работу источника питания в условиях смены температурного или влажностного режима.

— Магниево-серные батареи (Mg/S)

Обойти традиционные литиевые батареи могут и аккумуляторы, базирующиеся на соединении магния и серы. Правда, до последнего времени никто не мог обеспечить взаимодействие этих элементов в одной ячейке. Сам магниево-серный аккумулятор выглядит очень интересным, ведь его энергетическая плотность может доходить до более чем 4000 Вт-ч/л. Не так давно благодаря американским исследователям, по всей видимости, удалось решить основную проблему, стоящую на пути разработки магниево-серных батарей. Дело в том, что для пары магний и сера не было никакого подходящего электролита, совместимого с этими химическими элементами.

Однако ученые сумели создать такой приемлемый электролит за счет образования особых кристаллических частиц, обеспечивающих стабилизацию электролита. Образец магниево-серного аккумулятора включает в себя анод из магния, сепаратор, катод из серы и новый электролит. Впрочем, это только первый шаг. Перспективный образец, к сожалению, пока не отличается долговечностью.

— Фторид-ионные батареи

Еще один интересный источник питания, появившийся в последние годы. Здесь за перенос зарядов между электродами отвечают анионы фтора. При этом анод и катод содержат металлы, преобразующиеся (в соответствии с направлением тока) во фториды, либо восстанавливающиеся обратно. Благодаря этому обеспечивается значительная емкость батареи. Ученые заявляют, такие источники питания имеют энергетическую плотность, в десятки раз превосходящую возможности литий-ионных батареек. Помимо значительной емкости, новые аккумуляторы также могут похвастаться существенно меньшей пожароопасностью.

На роль основы твердого электролита было перепробовано множество вариантов, но выбор, в конечном счете, остановился на лантане бария. Хотя фторид-ионная технология кажется очень перспективным решением, она не лишена недостатков. Ведь твердый электролит может стабильно функционировать лишь при высоких температурах. Поэтому перед исследователями стоит задача отыскать жидкий электролит, способный успешно работать при обычной комнатной температуре.

— Литий-воздушные батареи (Li-O2)

В наши дни человечество стремится к использованию более «чистых» источников энергии, связанных с генерацией энергии солнца, ветра или воды. В этом плане очень интересными представляются литий-воздушные батареи. В первую очередь, они рассматриваются многими экспертами в качестве будущего электромобилей, но с течением времени могут найти применение и в мобильных устройствах. Такие источники питания обладают очень высокой емкостью и при этом сравнительно малыми размерами. Принцип их работы следующий: вместо оксидов металла в позитивном электроде применяется углерод, который вступает в химическую реакцию с воздухом, в результате чего создается ток. То есть для выработки энергии здесь частично используется кислород.

Использование кислорода в качестве активного материала катода имеет свои существенные преимущества, ведь он является практически неисчерпаемым элементом, а самое главное, абсолютно бесплатно берется из окружающей среды. Считается, что плотность энергии у литий-воздушных батарей сможет достигать впечатляющей отметки в 10 000 Втч/кг. Может быть, в недалеком будущем подобные батареи смогут поставить электромобили в один ряд с машинами на бензиновом двигателе. Кстати, аккумуляторы подобного типа, выпущенные для мобильных гаджетов, уже можно встретить в продаже под названием PolyPlus.

— Литий-нанофосфатные батареи

Литий-нанофосфатные источники питания – это следующее поколение литиево-ионных батареек, которые характеризуются высокой отдачей тока и сверхбыстрой зарядкой. Для полной зарядки такой батареи требуется всего пятнадцать минут. Они также допускают в десять раз больше циклов зарядки в сравнении со стандартными литий-ионными элементами. Таких характеристик удалось добиться благодаря использованию особых наночастиц, способных обеспечить более интенсивный поток ионов.

К достоинствам литий-нанофосфатных батарей можно отнести также слабый саморазряд, отсутствие «эффекта памяти» и способность работать в условиях широкого диапазона температур. Литий-нанофосфатные батареи уже доступны в продаже и применяются для некоторых типов устройств, однако их распространению мешает необходимость в специальном зарядном устройстве и больший вес в сравнении с современными литий-ионными или литийево-полимерными аккумуляторами.

В действительности, перспективных технологий в области создания аккумуляторных батарей гораздо больше. Ученые и исследователи работают не только над созданием принципиально новых решений, но и над улучшением характеристик существующих литий-ионных батареек. Например, за счет использования кремниевых нанопроводов или разработки нового электрода, обладающего уникальной способностью к «самозаживлению». В любом случае уже не за горами тот день, когда наши телефоны и другие мобильные устройства будут жить целые недели без подзарядки.



Загрузка...