sonyps4.ru

Пособие для начинающих: Центральный процессор и его характеристики. Что такое центральный процессор (CPU, ЦП)

Процессор – это одна из самых главных частей компьютера, его мозг. Он управляет его вычислительной частью, выполняет коды программ. Иначе процессор называют микропроцессором. А в переводе с английского аббревиатуры CPU значит центральное процессорное устройство.

Первый процессор подобного рода был изобретен в компании Intel. Дата появления на свет 15 ноября 1971 года. Это был первый четырехбитный процессор под названием intel 4004. Он очень сильно отличался от современных потомков мощностью, дизайном. Имел тактовую частоту не более 740 кГц, шестнадцать четырехбитных выходов и столько же входов. Он активно использовался в светофорах, анализаторах крови, а затем в зонде Пионер-10. Конечно у всех первых ЦПУ было очень слабое ядро для операций вычисления.

Что такое процессор

Процессор или CPU (как расшифровывается аббревиатура было написано ранее) обрабатывает получаемую информацию из других устройств. Он делает это как в своей собственной памяти, так и в памяти других устройств. Кроме этого устройство может самостоятельно руководить работой других элементов материнской платы, как встроенных, так и дискретных.

ЦП находится не только в материнской плате. В видеокартах есть свои собственные устройства или GPU (графические процессоры). Они отвечают за производительность видео и вывод на экран изображения. Можно сделать вывод, что там, где необходимы сложные математические вычислительные работы, где необходимо управление командами и взаимодействием между электронными деталями устройств – всегда нужен мозг, который будет собирать все воедино и создавать правила, не даст процессу течь хаотично. Этим мозгом служит центральное процессорное устройство (ЦПУ).

Мощность зависит от вложенной производителем скорости сопоставления команд, обработки данных. Скорость и многие другие параметры зависят от количества транзисторов, находящихся в устройстве, количества ядер, его разрядности. А способность исполнять определенный набор команд называется архитектурой ЦПУ.

Что такое архитектура процессора

Под архитектурой ЦПУ подразумевается совместимость устройства с определенным набором команд, способы их исполнения, структуры. По количеству и скорости выделяются RISC и CISC.

RISC в переводе означает компьютер с сокращенным набором команд. Для такой архитектуры характерно увеличение быстродействия за счет упрощения инструкций. Таким образом увеличивается тактовая частота и повышается распределение их между блоками.

Для ЦПУ с RISC архитектурой характерна фиксация длины инструкций машины (32 бита), отсутствие операций «читать-записать-изменить». В микропроцессоре с такой архитектурой нельзя найти микропрограммы внутри него. Команды исполняются как обычный машинный код.

CISC архитектура – это комплексный набор команд. Следует сказать, что все нынешние ЦП построены по данной архитектуре. А многие современные процессоры созданы на базе данной архитектуры но с RISC ядром. От RISC ее отличает нефиксированное число длины команд, все действия кодированы в одной команде, малое количество регистров.

Разновидности CPU

ЦП подразделяются на виды по производителям, по монтажу, по количеству ядер по многим другим параметрам. Все это условно и достаточно сложно. Рассмотрим основные из них.

ЦПУ по производителям делятся на Intel, AMD, VIA. ЦПУ от фирмы Интел делятся на линейки i3, i5, i7. Каждая линейка имеет от двух ядер, например i3, до четырех и более (i5, i7, i9). Каждая линейка имеет в себе несколько поколений ЦПУ. Каждое поколение модифицируется за счет добавления ядер, увеличения скорости вычислительных работ. До сих пор еще не вышли из использования более старые линейки от Интел такие, как core 2 duo и другие.

ЦПУ от AMD отличаются тем, что эта фирма выпускает гибридные устройства . А также включают в себя графический чип. Поэтому порой дискретная видеокарта не требуется. Это эффективные, рабочие лошадки. Единственный минус — это быстрое повышение температуры . Они намного горячее, чем процессоры фирмы Intel.

CPU тайваньской компании VIA не так популярны. Они не могут составить конкуренцию таким фирмам гигантам как Intel или AMD.

Устройства делятся по разрядности . Разрядность – это размер обрабатывания данных за один такт, которыми ЦПУ обменивается с ОЗУ. Их всего две – 32 разрядный и 64 разрядный. На компьютер с 32 разрядным ЦП устанавливается Windows только 32 битная. Ограничение в оперативной памяти до 4 гигабайт. 64 разрядный процессор был выпущен, как расширение первого. Поэтому на него можно установить, как 32, так и 64 битную систему. Ограничения по ОЗУ уже составляет 16 террабайт.

По количеству ядер ЦПУ делится на двухъядерные, четырех-ядерные, шести-, восьми ядерные и т.д. Чем больше ядер, тем больше потоков, а значит производительность компьютера увеличивается.

Приобретая процессор со встроенной видеокартой , пользователю не нужно будет дополнительно тратиться на дискретную. Современные процессоры со встроенной видеокартой вполне позволяют работать со многими нетребовательными программами и играть в старые игры. Для более новых игр или тяжелых программ таких, как автокад, фотошоп, которые усиленно задействуют графические вычисления, дополнительная видеокарта все-таки понадобится.

По архитектуре процессоры можно разделить на RISC и CISC (которые рассматривались ранее), а также буферный, препроцессор и процессор-клон. Буферный — используется для промежуточной обработки информации, т.е. выполняет роль буфера между центральным процессором и устройствами. Препроцессор — либо программа для предварительной обработки, либо устройство, которое выполняет те же функции, что и буферный. Клоны — это копии процессоров популярных фирм, не всегда являются полностью идентичными, часто производители их усовершенствуют и добавляют свои технологии.

Из чего состоит и принцип работы

Ниже на рисунке увидите внутреннюю схему параметров, из которых состоит процессор. Внешне он представляет из себя кремниевую пластину с миллиардами транзисторов, с помощью которых он обменивается сигналами с другими устройствами.

Главными устройствами любого ЦПУ являются ядро или несколько ядер, два или три уровня кэш-памяти, контроллер оперативно-запоминающего устройства, контроллер системных шин.

Ядро включает в себя блок выборки инструкций , предсказателя переходов, блоков декодирования, выборки данных, выполнения инструкций, управляющего блока, блок прерывания, регистров и счетчика команд.

Самыми важными являются блок работы с прерываниями. Он позволяет останавливать программы и своевременно реагировать на происходящий события. То есть этот блок отвечает за многозадачность процессора.

Кэш-память отвечает за временное хранение информации , к которой чаще всего обращается пользователь. За счет нее увеличивается скорость доставки данных в регистры ЦПУ.

Контроллер оперативно-запоминающего устройства находится в северном мосте . Он отвечает за соединение ЦП с узлами ОЗУ, графического контроллера.

Контроллер системных шин отвечает за передачу двоичных кодов .

Так как процессор выполняет практически всю работу и сильно нагружен, то соответственно должна работать система теплоотвода. Требования по теплоотводу или tdp прописаны для каждого процессора. Они показывают не максимальные значения, а минимальные при нормальных условиях работы. Если компьютер перегревается, из-за плохого охлаждения, температура поднимается. При срабатывании сигнала перегрева компьютер выключается или пропускает часть циклов работы. То есть он может подвисать, медленно работать.

Основные характеристики ЦПУ

К основным характеристикам CPU относятся:

  • Количество ядер . Они отвечают за одновременно работающие программы. Но это не значит, что чем больше ядер, тем быстрее будет работать программа. Если утилита оптимизирована под два ядра, то она будет работать на двух ядрах и не более.
  • Частота CPU руководит скоростью обмена информации процессора с системной шиной.
  • Техпроцесс . На данный момент равен 22 нанометрам. Техпроцессом является размер транзисторов. Они отвечают за производительность. Чем меньше размер, тем больше их разместиться на кристалле ЦП.
  • Тактовая частота . Это количество вычислений за единицу времени. Чем больше, тем лучше. Но не следует забывать и о других характеристиках.
  • Сокет вычислительного устройства. Необходимо, чтобы сокет совпадал с сокетом материнской платы.

С каждым годом технология все совершенствуется и совершенствуется. Поэтому данные могут изменяться из года в год.

Центральный процессор

Intel 80486DX2 в керамическом корпусе PGA.

Intel Celeron 400 socket 370 в пластиковом корпусе PPGA, вид снизу.

Intel Celeron 400 socket 370 в пластиковом корпусе PPGA, вид сверху.

Intel Celeron 1100 socket 370 в корпусе FC-PGA2, вид снизу.

Intel Celeron 1100 socket 370 в корпусе FC-PGA2, вид сверху.

Центра́льный проце́ссор (ЦП ; CPU - англ. céntral prócessing únit , дословно - центральное вычислительное устройство ) - исполнитель машинных инструкций , часть аппаратного обеспечения компьютера или программируемого логического контроллера , отвечающий за выполнение операций, заданных программами.

Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами . С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших (СБИС) интегральных схем.

Изначально термин Центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ . Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы . Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров , а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях , калькуляторах , мобильных телефонах и даже в детских игрушках . Чаще всего они представлены микроконтроллерами , где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Архитектура фон Неймана

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом .

Д. фон Нейман придумал схему постройки компьютера в 1946 году.

Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд , на шину адреса , и отдаёт памяти команду чтения;
  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных , и сообщает о готовности;
  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;
  4. Если последняя команда не является командой перехода , процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
  5. Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм полезной работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода - тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки аппаратного прерывания .

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором . Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой .

Конвейерная архитектура

Конвейерная архитектура (pipelining ) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ , дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

  • получение и декодирование инструкции (Fetch)
  • адресация и выборка операнда из ОЗУ (Memory access)
  • выполнение арифметических операций (Arithmetic Operation)
  • сохранение результата операции (Store)

После освобождения k -й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполнения m команд понадобится единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n + m единиц времени.

Факторы, снижающие эффективность конвейера:

  1. простой конвейера, когда некоторые ступени не используются (напр., адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами);
  2. ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд, out-of-order execution);
  3. очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)

Суперскалярная архитектура

Способность выполнения нескольких машинных инструкций за один такт процессора. Появление этой технологии привело к существенному увеличению производительности.

x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

Джоном Коком (John Cocke) из .

Двухядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двухядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Quad состоит из четырёх физических ядер, что существенно влияет на скорость его работы.

На данный момент массово доступны двух- и четырехядерные процессоры, в частности Intel Core 2 Duo на 65 нм ядре Conroe (позднее на 45 нм ядре Wolfdale) и Athlon64X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший обьем кэша и рабочие частоты.

Компания AMD пошла по собственному пути, изготовляя четырехядерные процессоры единым кристаллом (в отличие от Intel, процессоры которой представляют собой фактически склейку двух двухядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый «четырёхядерник» фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

На настоящий момент (1-2 квартал 2009 года) обе компании обновили свои линейки четырёхядерных процессоров. Intel представила семейство Core i7, состоящее из трех моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трехканального контроллера памяти (типа DDR-3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой сторной платформы, использующей Core i7 является ее чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel-X58 и трехканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объем кэша (явно недостаточный у первого «Фенома»), а производство процессора было переведено на 45 нм техпроцесс, позволивший снизить тепловыделение и значительно повысить рабочие частоты. В целом AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстает от Intel Core i7. Однако, принимая во внимание умеренную стоимость платформы на базе этого процессора, его рыночные перспективы выглядят куда более радужно чем у предшественника.

Кэширование

Кэширование - это использование дополнительной быстродействующей памяти (кэш-памяти) для хранения копий блоков информации из основной (оперативной) памяти, вероятность обращения к которым в ближайшее время велика.

Различают кэши 1-, 2- и 3-го уровней. Кэш 1-го уровня имеет наименьшую латентность (время доступа), но малый размер, кроме того кэши первого уровня часто делаются многопортовыми. Так, процессоры AMD K8 умели производить 64 бит запись+64 бит чтение либо два 64-бит чтения за такт, AMD K8L может производить два 128 бит чтения или записи в любой комбинации, процессоры Intel Core 2 могут производить 128 бит запись+128 бит чтение за такт. Кэш 2-го уровня обычно имеет значительно большие латентности доступа, но его можно сделать значительно больше по размеру. Кэш 3-го уровня самый большой по объёму и довольно медленный, но всё же он гораздо быстрее, чем оперативная память.

Параллельная архитектура

Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию. Этот эффект называется узким горлышком фон Неймана .

Для преодоления этого недостатка предлагались и предлагаются архитектуры процессоров, которые называются параллельными . Параллельные процессоры используются в суперкомпьютерах .

Возможными вариантами параллельной архитектуры могут служить (по классификации Флинна):

Технология изготовления процессоров

История развития процессоров

Первым общедоступным микропроцессором был 4-разрядный Intel 4004. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Но из-за распространённости 8-разрядных модулей памяти был выпущен 8088, клон 8086 с 8-разрядной шиной памяти. Затем проследовала его модификация 80186. В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 МБ памяти. Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 ГБ оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

Современная технология изготовления

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

В начале 1970-х годов благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем), микросхем , стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 80-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом.

Квантовые процессоры

Процессоры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.

Российские микропроцессоры

Разработкой микропроцессоров в России занимается ЗАО «МЦСТ ». Им разработаны и внедрены в производство универсальные RISC-микропроцессоры с проектными нормами 130 и 350 нм. Завершена разработка суперскалярного процессора нового поколения Эльбрус . Основные потребители российских микропроцессоров - предприятия ВПК .

История развития

Другие национальные проекты

Китай

    См. также

    Примечания

    Ссылки

    • Отечественные многоядерные процессоры «Мультикор», RISC+DSP, для ВПК
    • Правительство обнулило пошлины на процессоры 18.09.2007
    • Intel представила 80-ядерный процессор Ferra.ru, 12 февраля 2007

    Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

    Что такое центральный процессор?

    Из чего состоит процессор?

    Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

    Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

    Основные характеристики

    Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

    • количество ядер;
    • число потоков;
    • размер кэша (внутренней памяти);
    • тактовая частота;
    • быстрота шины.

    Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

    На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

    Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

    Как работает процессор: обработка команд

    Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

    Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

    • выработка;
    • дешифрование;
    • выполнение команды;
    • обращение к памяти самого процессора
    • сохранение результата.

    Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

    Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

    Выполняемые операции

    Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

    • математические действия на основе арифметико-логического устройства;
    • перемещение данных (информации) из одного типа памяти в другой;
    • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

    Взаимодействие с памятью (ПЗУ и ОЗУ)

    В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

    Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

    Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

    Как проверить, работает ли процессор?

    Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

    Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

    Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

    Возможные проблемы

    Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

    Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

    Описание и назначение процессоров

    Определение 1

    Центральный процессор (ЦП) – основной компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет процессом вычислений и координирует работу всех устройств ПК.

    Чем мощнее процессор, тем выше быстродействие ПК.

    Замечание

    Центральный процессор часто называют просто процессором, ЦПУ (Центральное Процессорное Устройство) или CPU (Central Processing Unit), реже – кристаллом, камнем, хост-процессором.

    Современные процессоры являются микропроцессорами.

    Микропроцессор имеет вид интегральной схемы – тонкой пластинки из кристаллического кремния прямоугольной формы площадью в несколько квадратных миллиметров, на которой размещены схемы с миллиардами транзисторов и каналов для прохождения сигналов. Кристалл-пластинка помещен в пластмассовый или керамический корпус и соединен золотыми проводками с металлическими штырьками для подсоединения к системной плате ПК.

    Рисунок 1. Микропроцессор Intel 4004 (1971 г.)

    Рисунок 2. Микропроцессор Intel Pentium IV (2001 г.). Слева – вид сверху, справа – вид снизу

    ЦП предназначен для автоматического выполнения программы.

    Устройство процессора

    Основными компонентами ЦП являются:

    • арифметико-логическое устройство (АЛУ) выполняет основные математические и логические операции;
    • управляющее устройство (УУ), от которого зависит согласованность работы компонентов ЦП и его связь с другими устройствами;
    • шины данных и адресные шины ;
    • регистры , в которых временно хранится текущая команда, исходные, промежуточные и конечные данные (результаты вычислений АЛУ);
    • счетчики команд ;
    • кэш-память хранит часто используемые данные и команды. Обращение в кэш-память гораздо быстрее, чем в оперативную память, поэтому, чем она больше, тем выше быстродействие ЦП.

    Рисунок 3. Упрощенная схема процессора

    Принципы работы процессора

    ЦП работает под управлением программы, которая находится в оперативной памяти.

    АЛУ получает данные и выполняет указанную операцию, записывая результат в один из свободных регистров.

    Текущая команда находится в специальном регистре команд. При работе с текущей командой значение так называемого счетчика команд увеличивается, который затем указывает на следующую команду (исключением может быть только команда перехода).

    Команда состоит из записи операции (которую нужно выполнить), адресов ячеек исходных данных и результата. По указанным в команде адресам берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала помещается в регистр, а уж потом перемещается по своему адресу, указанному в команде.

    Характеристики процессора

    Тактовая частота указывает частоту, на которой работает ЦП. За $1$ такт выполняется несколько операций. Чем выше частота, тем выше быстродействие ПК. Тактовая частота современных процессоров измеряется в гигагерцах (ГГц): $1$ ГГц = $1$ миллиард тактов в секунду.

    Для повышения производительности ЦП стали использовать несколько ядер, каждое из которых фактически является отдельным процессором. Чем больше ядер, тем выше производительность ПК.

    Процессор связан с другими устройствами (например, с оперативной память ю) через шины данных, адреса и управления. Разрядность шин кратна 8 (т.к. имеем дело с байтами) и отличается для разных моделей, а также различна для шины данных и шины адреса.

    Разрядность шины данных указывает на количество информации (в байтах), которое можно передать за $1$ раз (за $1$ такт). От разрядности адресной шины зависит максимальный объем оперативной памяти, с которым может работать ЦП.

    От частоты системной шины зависит количество данных, которые передаются за отрезок времени. Для современных ПК за $1$ такт можно передать несколько бит. Важна также и пропускная способность шины, равная частоте системной шины, умноженной на количество бит, которые можно передать за $1$. Если частота системной шины равна $100$ Мгц, а за $1$ такт передается $2$ бита, то пропускная способность равна $200$ Мбит/сек.

    Пропускная способность современных ПК исчисляется в гигабитах (или десятках гигабит) в секунду. Чем выше этот показатель, тем лучше. На производительность ЦП влияет также объем кэш-памяти.

    Данные для работы ЦП поступают из оперативной памяти, но т.к. память медленнее ЦП, то он может часто простаивать. Во избежание этого между ЦП и оперативной памятью располагают кэш-память, которая быстрее оперативной. Она работает как буфер. Данные из оперативной памяти посылаются в кэш, а затем в ЦП. Когда ЦП требует следующее данное, то при наличии его в кэш-памяти оно берется из него, иначе происходит обращение к оперативной памяти. Если в программе выполняется последовательно одна команда за другой, то при выполнении одной команды коды следующих команд загружаются из оперативной памяти в кэш. Это сильно ускоряет работу, т.к. ожидание ЦП сокращается.

    Замечание 1

    Существует кэш-память трех видов:

    • Кэш-память $1$-го уровня самая быстрая, находится в ядре ЦП, поэтому имеет небольшие размеры ($8–128$ Кб).
    • Кэш-память $2$-го уровня находится в ЦП, но не в ядре. Она быстрее оперативной памяти, но медленнее кэш-памяти $1$-го уровня. Размер от $128$ Кбайт до нескольких Мбайт.
    • Кэш-память $3$-го уровня быстрее оперативной памяти, но медленнее кэш-памяти $2$-го уровня.

    От объема этих видов памяти зависит скорость работы ЦП и соответственно компьютера.

    ЦП может поддерживать работу только определенного вида оперативной памяти: $DDR$, $DDR2$ или $DDR3$. Чем быстрее работает оперативная память, тем выше производительность работы ЦП.

    Следующая характеристика – сокет (разъем), в который вставляется ЦП. Если ЦП предназначен для определенного вида сокета, то его нельзя установить в другой. Между тем, на материнской плате находится только один сокет для ЦП и он должен соответствовать типу этого процессора.

    Типы процессоров

    Основной компанией, выпускающей ЦП для ПК, является компания Intel. Первым процессором для ПК был процессор $8086$. Следующей моделью была $80286$, далее $80386$, со временем цифру $80$ стали опускать и ЦП стали называть тремя цифрами: $286$, $386$ и т.д. Поколение процессоров часто называют семейством $x86$. Выпускаются и другие модели процессоров, например, семейства Alpha, Power PC и др. Компаниями-производителями ЦП также являются AMD, Cyrix, IBM, Texas Instruments.

    В названии процессора часто можно встретить символы $X2$, $X3$, $X4$, что означает количество ядер. Например в названии Phenom $X3$ $8600$ символы $X3$ указывают на наличие трех ядер.

    Итак, основными типами ЦП являются $8086$, $80286$, $80386$, $80486$, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III и Pentium IV. Celeron является урезанным вариантом процессора Pentium. После названия обычно указывается тактовая частота ЦП. Например, Celeron $450$ обозначает тип ЦП Celeron и его тактовую частоту – $450$ МГц.

    Процессор нужно устанавливать на материнскую плату с соответствующей процессору частотой системной шины.

    В последних моделях ЦП реализован механизм защиты от перегрева, т.е. ЦП при повышении температуры выше критической переходит на пониженную тактовую частоту, при которой потребляется меньше электроэнергии.

    Определение 2

    Если в вычислительной системе несколько параллельно работающих процессоров, то такие системы называются многопроцессорными .

    Прекрасно знают основные составляющие компьютера, но мало кто понимает, из чего состоит процессор. А между тем это главное устройство системы, которое выполняет арифметические и логические операции. Основная функция процессора состоит в получении информации, ее обработке и отдаче конечного результата. Звучит все просто, но на самом деле процесс этот сложный.

    Из чего состоит процессор

    ЦП ‒ это миниатюрная кремниевая пластина прямоугольной формы, которая содержит миллионы транзисторов (полупроводников). Именно они реализуют все функции, которые выполняет процессор.

    Почти все современные процессоры состоят из следующих компонентов:

    1. Несколько ядер (редко 2, чаще 4 или 8), которые выполняют все функции. По сути, ядро представляет собой отдельный миниатюрный процессор. Несколько интегрированных в основной чип ядер параллельно работают над задачами, что ускоряет процесс обработки данных. Однако не всегда большее количество ядер означает более быструю работу чипа.
    2. Несколько уровней памяти КЭШ (2 или 3), благодаря чему время взаимодействия ОЗУ и процессора сокращается. Если информация находится в КЭШе, то время доступа к ней минимизировано. Следовательно, чем большим будет объем КЭШа, тем больше информации в него поместится и тем быстрее будет сам процессор.
    3. Контроллер ОЗУ и системной шины.
    4. Регистры ‒ ячейки памяти, где хранятся обрабатываемые данные. Они всегда имеют ограниченный размер (8, 16 или 32 бит).
    5. Сопроцессор. Отдельное ядро, которое предназначается для выполнения операций определенного типа. Чаще всего в виде сопроцессора выступает графическое ядро (видеокарта).
    6. Адресная шина, которая связывает чип со всеми подключенными к материнской плате устройствами.
    7. Шина данных - для связи процессора с оперативной памятью. По сути, шина представляет собой набор проводников, посредством которых передается или принимается электрический сигнал. И чем больше будет проводников, тем лучше.
    8. Шина синхронизации - позволяет контролировать такты и частоту работы процессора.
    9. Шина перезапуска - обнуляет состояние чипа.

    Все эти элементы принимают участие в работе. Однако самым главным среди них, безусловно, является именно ядро. Все остальные указанные составляющие лишь помогают ему выполнять основную задачу. Теперь, когда вы понимаете, из чего состоит процессор, можно более детально рассмотреть его основной компонент.

    Ядра

    Говоря о том, из чего состоит центральный процессор, в первую очередь нужно упомянуть ядра, так как именно они представляют собой основные его части. Ядра включают в себя функциональные блоки, выполняющие арифметические или логические операции. В частности, можно выделить:

    1. Блок выборки, декодирования и выполнения инструкций.
    2. Блок сохранения результатов.
    3. Блок счетчика команд и т.д.

    Как вы поняли, каждый из них выполняет определенную задачу. Например, блок выборки инструкций считывает их по указанному в счетчике команд адресу. В свою очередь, блоки декодирования определяют, что именно надо сделать процессору. В совокупности работа всех этих блоков и позволяет добиться выполнения указанной пользователем задачи.

    Задача ядер

    Отметим, что ядра могут выполнять только математические расчеты и операции сравнения, а также перемещать данные между ячейками ОЗУ. Впрочем, этого хватает, чтобы пользователи могли играть в игры на компьютере, смотреть фильмы, просматривать веб-страницы.

    По сути, любая компьютерная программа состоит из простых команд: сложить, умножить, переместить, поделить, перейти к инструкции при выполнении условия. Конечно, это лишь примитивные команды, однако их объединение между собой позволяет создать сложную функцию.

    Регистры

    Из чего состоит процессор еще, кроме ядер? Регистры - второй важный его компонент. Как вы уже знаете, это быстрые ячейки памяти, где находятся обрабатываемые данные. Они бывают разными:

    1. A, B, C - используются для хранения информации во время обработки. Их всего три, но этого достаточно.
    2. EIP - в этом регистре хранится адрес следующей в очереди инструкции.
    3. ESP - адрес данных в ОЗУ.
    4. Z - здесь находится результат последней операции сравнения.

    Этими регистрами процессор не ограничивается. Есть и другие, однако указанные выше являются самыми главными - именно ими чаще всего пользуется чип для обработки данных во время выполнения той или иной программы.

    Заключение

    Теперь вы знаете, из чего состоит процессор и какие его модули являются основными. Подобный состав чипов не является постоянным, так как они постепенно совершенствуются, добавляются новые модули, усовершенствуются старые. Однако сегодня то, из чего состоит процессор, его назначение и функционал являются именно такими, как описано выше.

    Описанный выше состав и приблизительный принцип работы систем процессора упрощены до минимума. На самом деле весь процесс является более сложным, но для его понимания необходимо получать соответствующее образование.



Загрузка...