sonyps4.ru

Оптимизация работы SSD диска под Windows. Гибридные жёсткие диски SSHD

Если вы решили приобрести твердотельный SSD накопитель, то на это может быть несколько причин:

  • Вас не устраивает скорость работы вашего HDD.
  • Вам необходима быстрая работа windows и определенных типов приложений, игр.

Однако установить ССД в компьютер или ноутбук, а затем заполнить его информацией недостаточно. Необходимо также оптимизировать его работу с работой вашей OC.


Рассмотрим основные методы оптимизации SSD диска.

AHCI SATA

Технология, позволяющая использовать функцию TRIM для различных твердотельных накопителей. Ее включение производится на уровне BIOS вашего ПК или ноутбука.

Включение AHCI SATA:

  1. Открываете командную строку комбинацией клавиш win + R.
  2. Вводите команду: «regedit» (доступ в реестр).
  3. Переходите по следующему пути: HKEY_LOCAL_MACHINE → SYSTEM → CurrentControlSet → Services → storahci.
  4. Измените значение подраздела ErrorControl на 0 (по умолчанию 3), вызвав контекстное меню и нажав параметр «Modify».
  5. Перейдите в ветку с название «StartOverride» и измените его значение на 0 (по умолчанию 3).
  6. Перезагрузите ваш ПК (ноутбук), зайдите в BIOS/UEFI (как зайти в BIOS, смотрите отдельно для модели вашего ноутбука или материнской платы ПК). В разделе «storage configuration», и в подразделе «SATA port» выставить AHCI или же в разделе «SATA RAID/AHCI Mode», выставить AHCI (Для разных версий BIOS, свои разделы и подразделы).
  7. Проверьте работоспособность функции в Windows. Перейдите по следующему пути: Панель управления → Диспетчер устройств → IDE ATA/ATAPI controllers. В последнем подразделе должно появиться устройство: «Standard SATA AHCI Controller».

Функция TRIM

По умолчанию данная функция включена на windows 7 и выше, однако, лучше вручную проверить работает ли эта функция. Смысл TRIM в том, что после удаления файлов, windows передает SSD накопителю информацию, что определенная область диска не используется и ее можно очистить для записи. (в HDD данные остаются и запись производится «поверх» существующей). Со временем, если функция отключена, будет происходить падение производительности накопителя.

Проверка TRIM в Windows:

  1. Запустите командную строку, нажав комбинацию клавиш win + R.
  2. Введите команду: «fsutil behavior query disabledeletenotify».
  3. Если после ввода выводится сообщение: «DisableDeleteNotify = 0», то функция TRIM включена, если «DisableDeleteNotify = 1», то TRIM не функционирует. Если TRIM не работает, введите команду: «fsutil behavior set DisableDeleteNotify 0», затем повторите пункты 2 и 3.

Дефрагментация

Данная функция помогает оптимизировать и ускорить работу HDD, но для SSD, она оказывает пагубное влияние. Для SSD, функция «автоматическая дефрагментация» по умолчанию отключена. Чтобы проверить работает ли она необходимо:

  1. Нажать комбинацию win + R.
  2. В окне командной строки ввести команду: «dfrgui» и нажать «ОК».
  3. В открывшемся окне, выделите ваш ССД и посмотрите на пункт «Оптимизация по расписанию». Для нашего твердотельного накопителя она должна быть отключена.

Индексация

Функция Windows, помогающая выполнять быстрый поиск файлов на диске при больших объемах информации, однако, увеличивающая нагрузку по записи на SSD. Для ее отключения:

  1. Переходим в раздел «Этот компьютер», «Мой компьютер», «Компьютер» (для каждой ОС по-разному).
  2. Выбираете ваш ССД и в контекстном меню выбираете «Свойства».
  3. В открывшемся окне, снимаете флажок напротив параметра: «Разрешить индексирование содержимое файлов на этом диске в дополнение к свойствам файла».

Служба поиска

Ее функция создает файловый индекс, благодаря которому нахождение разнообразных файлов и папок производится быстрее. Однако скорости ССД вполне достаточно чтобы от нее отказаться. Для ее отключения необходимо:

  1. Переходите по следующему адресу: Панель управления → Система и безопасность → Администрирование → Управление компьютером.
  2. Переходите во вкладку: «Службы».
  3. Находите службу «Windows search» и во вкладке «Тип запуска» выбираете «Отключена».

Гибернация

Режим, который позволяет сохранять содержимое оперативной памяти на жёстком диске, благодаря чему при последующем включении, сохраняется информация и открытые приложения с предыдущего сеанса.

При использовании ССД смысл этой функции теряется, так как накопитель и так быстро стартует. А «Гибернация», создавая циклы «запись-перезапись», уменьшает продолжительность жизни SSD диска.

Отключение гибернации:

  1. Запускаете вновь cmd.exe сочетанием клавиш win + R.
  2. Вводите команду: «powercfg -h off».

Кэширование записи

Данная функция повышает производительность вашего твердотельного накопителя. При ее включении используется технология записи и чтения NCQ. NCQ – принимает несколько запросов одновременно, а затем организовывает их порядок выполнения таким образом, чтобы достичь максимальной производительности.

Для подключения необходимо:

  1. Вызвать командную строку комбинацией win + R
  2. Ввести команду: «devmgmt.msc».
  3. Открыть «Дисковые устройства», выбрать SSD и в контекстном меню выбрать «Свойства».
  4. Перейти во вкладку «Политика».
  5. Поставить «галочку» напротив параметра: «Разрешить кэширование записей для этого устройства».

Prefetch и Superfetch

Prefetch – технология, с помощью которой часто используемые программы загружаются в память заранее, тем самым ускоряется последующий их запуск. При этом на дисковом пространстве создается одноименный файл.

Superfetch – технология похожая на Prefetch с тем отличием, что ПК предугадывает какие приложения будут запущенны, заблаговременно загружая их в память.

Обе функции не имеют пользы при использовании SSD. Поэтому их лучше всего отключить. Для этого:

  1. Вызываем командную строку сочетанием клавиш win + R.
  2. Выполняем команду: «regedit» (переход в реестр).
  3. Переходите по пути: HKEY_LOCAL_MACHINE → SYSTEM → CurrentControlSet → Control → Session Manager → Memory Management → PrefetchParameters.
  4. Находите в подразделе реестра несколько параметров: «EnablePrefetcher» и «EnableSuperfetch», устанавливаете их значение в 0 (по умолчанию 3).

Утилита SSD Mini Tweaker

Все вышеперечисленные действия можно выполнять вручную, но руками программистов были созданы программы – твикеры, предназначение которых кастомизация ОС windows, а также отдельных ее компонентов с помощью нескольких кликов. Одной из таких программ является SSD Mini Tweaker .

SSD Mini Tweaker – программа, разновидность твикеров, позволяющая без особых усилий оптимизировать ваш SSD.

Преимущества:

  • Полная русификация.
  • Работает на всех ОС начиная с Windows 7.
  • Бесплатная.
  • Понятный интерфейс.
  • Не требует установки.

Другие способы

Такие манипуляции, как перенос кэша браузеров, файлов подкачки, временных папок Windows, бэкапа системы с SSD диска на HDD (или отключение данной возможности) являются бесполезными, так как хоть и увеличивают продолжительность жизни ССД, но ограничивают потенциал его использования.

Тем самым выполнив несложные вышеперечисленные манипуляции с вашей ОС, вы сможете продлить жизнь вашего накопителя, а также настроить его на режим максимальной производительности.

Введение

По мере развития бизнеса возможности приложений с интенсивными рабочими потоками часто ограничиваются характеристиками жестких дисков (HDD). Несмотря на то, что емкости HDD резко возросли, скорость выполнения операций произвольного ввода/вывода (I/O) не увеличивалась в том же темпе. Однако, теперь возможно ускорить обработку потоков с интенсивным чтением данных, таких, как при онлайн транзакциях (On-Line Transaction Processing - OLTP), в сетевых и файловых серверах, базах данных, применяя новую технологию кэширования, Infortrend SSD Cache, которая использует высокую скорость и малую задержку твердотельных дисков для повышения скорости считывания часто требующихся жизненно важных данных. Скорость чтения для SSD значительно выше по сравнению с HDD и, следовательно, SSD Cache может существенно улучшить характеристики произвольного чтения и снизить время отклика.

Применимость настоящего документа

Семейство EonStor DS

Что такое SSD Cache?

Кэш-память - это компонент, который прозрачно накапливает данные, так что следующие обращения к ним могут обслуживаться более эффективно. Он имеет решающее значение для хранилища, особенно в применениях с интенсивным чтением данных. Без включения SSD Cache емкость кэш-памяти контроллера ограничена. SSD Cache позволяет использовать быстрые SSD для наращивания пула кэш-памяти системы хранения и накапливания часто запрашиваемых данных. С увеличением емкости SSD Cache частота попадания в кэш также увеличивается. Другими словами, все больше и больше “горячих” данных будет храниться в SSD Cache, будущие обращения к этим данным будут обслуживаться более эффективно и, следовательно, характеристики чтения будут улучшаться.

Почему Infortrend SSD Cache?

Во многих случаях, когда процентное содержание операций чтения в рабочем потоке значительно выше, чем операций записи, и происходит повторяющееся считывание небольшого количества данных, SSD Cache может дать следующие преимущества:

1.Улучшение характеристик чтения

SSD Cache использует интеллектуальный алгоритм, чтобы ускорить обработку интенсивных потоков с произвольным чтением данных, таких, как OLTP и обращения к базам данных. В таких ситуациях SSD Cache может существенно увеличить общую скорость чтения. Например, SSD Cache может в 2,5 раза увеличить значение IOPS при OLTP по сравнению с той же системой без SSD Cache. В то же время задержки также уменьшаются и, следовательно, степень улучшения характеристик зависит от действительных рабочих потоков приложения и поведения пользователя.

2.Интеллектуальное ПО и алгоритм управления

Интеллектуальное ПО автоматически анализирует модель доступа к данным и распознает последовательные и произвольные операции чтения/записи. Данные последовательного чтения или записи не заносятся в пул SSD Cache, в нем накапливаются только данные произвольного чтения, чтобы SSD использовались наиболее эффективно. Если более точно, то встроенное ПО автоматически перемещает копии наиболее часто требующихся данных из кэш-памяти контроллера в пул SSD Cache в соответствующее время. Эти “горячие” данные впоследствии будут считаны из SSD Cache, если система получит запрос на их чтение. Разработанны Infortrend алгоритм оптимизирует цикличность копирования данных в SSD, так что для этой цели можно применять и сравнительно дешевые SSD. Это решение не только улучшает характеристики чтения, но и продлевает срок службы жестких дисков за счет уменьшения количества циклов чтения и записи.

3.Простой интуитивный интерфейс пользователя

Функции SSD Cache полностью интегрированы в Infortrend SANWatch и RAIDWatch GUI. Они очень просто настраиваются, управляются и обслуживаются. Например, пользователь может наблюдать за состоянием пула SSD Cache и легко проверять оставшийся срок службы для каждого SSD.

Infortrend SSD Cache

Как работает Infortrend SSD Cache

Если SSD Cache включено и работает в течение некоторого времени, интеллектуальное встроенное ПО собирает статистику и немедленно обновляет записи о “температуре” данных в кэш-памяти контроллера. Основываясь на этих записях, встроенная программа автоматически копирует в соответствующее время небольшие фрагменты случайных часто требующихся данных из кэш-памяти контроллера в пул SSD Cache, используя метод последовательной записи, чтобы избежать интенсивных операций с SSD и, следовательно, увеличить срок их службы. Пока пул SSD Cache Pool не заполнится “горячими” данными, генерируемыми приложениями на хосте, метод предварительного копирования блоков на SSD с помощью зонного предсказания ускоряет операции чтения. Если размер блока данных меньше или равен 16 KB, данные копируются прямо в пул SSD, даже если они считываются только однократно. Если размер блока больше 16 KB, и программа распознает его как “горячие” данные (считываются несколько раз), то они классифицируются как часто требующиеся и сохраняются в пуле SSD. Для этих “горячих” данных будет хранится две копии - одна в SSD Cache и одна на жестких дисках.

Как правило, по получении запроса на чтение данных система проверяет, имеются ли соответствующие данные в кэш-памяти контроллера. Если запрашиваемые данные есть в кэше контроллера, система тут же возвращает их хосту. Если же запрашиваемых данных нет в кэше контроллера, то система проверяет пул SSD Cache. Если запрашиваемые данные были сохранены в SSD Cache на основании оценки их “температуры”, то система считывает эти данные прямо из SSD Cache и возвращает из хосту. В противном случае данные будут возвращены с более медленного устройства. Следовательно, чем больше попаданий в кэш, тем больше запросов будет обслужено SSD Cache, поэтому общие характеристики и среднее время отклика будут улучшаться.

Что нужно для работы SSD Cache

1. Требования к программному обеспечению и SANWatch

ПО версия 512F12 или выше

SANWatch версия 3.0.h.14 или выше

2. Лицензия на SSD Cache

SSD Cache доступно по лицензии. Infortrend также предоставляет 30-дневную пробную лицензию.

3.Соотношение между емкостью кэш-памяти контроллера и максимальным размером пула SSD Cache:

Если в системе разрешена работа SSD Cache, то кэш-память контроллера будет использовать некоторую часть пространства для сохранения “горячих” данных, и размер “горячих” записей в кэше контроллера будет определять максимальный поддерживаемый размер пула SSD. Для начальной комбинации (2 GB на контроллер) максимальный поддерживаемый размер пула SSD Cache равен 150 GB для одиночного контроллера и 300 GB для моделей с двойным избыточным контроллером.

По сравнению с SSD кэш-память контроллера более экономична. Кроме того, в кэш-память контроллера могут попадать не только считываемые, но и записываемые данные. Следовательно, мы рекомендуем пользователям EonStor DS нарастить кэш-память до 16 GB на один контроллер и приобрести подходящие SSD для кэш-пула (соответствующие вашим потребностям и бюджету), чтобы получить максимальный выигрыш в характеристиках.

4.Сброс контроллера(ов) для запуска SSD Cashe

Последний шаг запуска SSD Cache включает сброс контроллера(ов). По умолчанию, в кэш-памяти контроллера не назначается пространство для хранения “горячих” данных. Следовательно, требуется сбросить контроллер и инициализировать его так, чтобы выделить подходящее пространство для “горячих” записей. После сброса контроллера и активации функции SSD Cache управлять им очень просто. Нет необходимости сбрасывать или перегружать систему при добавлении SSD в пул или удалении из него. Эта процедура выполняется с помощью интуитивного интерфейса пользователя через SANWatch или RAIDWatch.

5.Требования к SSD

В настоящее время один контроллер поддерживаеи до 4 SSD. Если вы хотите использовать функцию SSD Cache, проверьте, пожалуйста, числится ли выбранная вами модель SSD в квалификационном списке Infortrend Qualified Vendor List (QVL). Только SSD из нашего QVL могут применяться для улучшения характеристик хранилища, как описано в этом документе.

Заключение

Infortrend SSD Cache представляет собой интеллектуальное решение, которое многократно улучшает характеристики хранилища, в особенности для приложений с интенсивным чтением данных, значительно снижает задержки и поддерживает большие пулы кэш-памяти. Его легко устанавливать, администрировать и обслуживать с помощью интуитивных интерфейсов пользователя от Infortrend. Мы настоятельно рекомендуем использовать его в системах с интенсивными рабочими потоками и часто повторяющимися операциями чтения.

Полный текст статьи с иллюстрациями вы можете скачать в виде pdf файла.

Традиционная система хранения подразумевает размещение данных на жестких дисках HDD и твердотельных дисках SSD. В последние годы емкости HDD растут стремительными темпами. Однако, скорость их при случайном доступе по-прежнему мала. Для некоторых приложений, таких как базы данных, облачные технологии или виртуализация, требуется как высокая скорость доступа, так и большой объем. Получается, что использование только HDD не приемлемо, а использование SSD неоправданно дорого. Использование SSD только в качестве кэша является лучшим соотношением цена/производительность для системы в целом. В этом случае сами данные будут располагаться на емких HDD, а дорогие SSD будут давать прирост производительности при случайном доступе к этим данным.

Чаще всего SSD-кэш будет полезен в следующих случаях:

  1. Когда скорость работы HDD в IOPS при чтении является узким местом.
  2. Когда операций ввода/вывода на чтение существенно больше, чем на запись.
  3. Когда объем часто используемых данных меньше размера SSD.

Решение

SSD-кэширование – это дополнительный кэш для увеличения производительности. Один или несколько SSD должны быть назначены виртуальному диску (луну) для использования в качестве кэша. Обратите внимание, что эти SSD будут недоступны для хранения данных. В настоящее время размер SSD-кэша ограничен 2.4ТБ.

Когда производится операция чтения/записи, копия данных помещается на SSD. В следующий раз любая операция с этим блоком будет производиться напрямую с SSD. В итоге это уменьшит время реакции и, как следствие, увеличит общую производительность. Если, к несчастью, SSD откажет, то данные не потеряются, т.к. в кэше содержится копия данных с HDD.

SSD-кэш делится на группы – блоки, каждый блок делится на субблоки. Характер операций ввода/вывода для виртуального диска определяет выбор размера блока и субблока.

Заполнение кэша

Чтение данных с HDD и запись их на SSD называется заполнением кэша. Эта операция выполняется в фоновом режиме сразу же после того, как хост производит операции чтения или записи. Работа кэша ограничена двумя параметрами:

  • Populate-on-read threshold
  • Populate-on-write threshold

Эти значения больше нуля. Если они равны нулю, то кэш на чтение или запись не работает. В соответствии с этими значениями каждый блок соотносится с его счетчиком чтения или записи. Когда хост производит операцию чтения, и данные расположены в кэше, счетчик чтения увеличивается. Если в кэше нет данных и счетчик чтения больше или равен значению Populate-on-read threshold, то данные копируются в кэш. Если же значение счетчика меньше Populate-on-read threshold, то данные читаются мимо кэша. Для операций записи ситуация аналогична.

Сценарии работы SSD-кэша

Тип ввода/вывода

Тип ввода/вывода определяет конфигурацию SSD-кэша. Эта конфигурация выбирается администратором и определяет параметры блока, субблока, populate-on-read threshold и populate-on-write threshold. Имеются три заранее определенные конфигурации согласно типам ввода/вывода: базы данных, файловая система и web-сервисы. Администратору необходимо выбрать конфигурацию SSD-кэша для виртуального диска. В процессе работы можно сменить тип конфигурации, но в этом случае содержимое кэша будет сброшено. Если предопределенные конфигурации не подходят под используемый профиль нагрузки, то имеется возможность задать собственные значения параметров.



Размер блока влияет на время «прогрева» кэша, т.е. когда наиболее востребованные данные переместятся на SSD. Если данные расположены на HDD близко друг к другу, то лучше использовать блок большого размера. Если же данные расположены хаотично, то логичнее использовать блок малого размера.

Размер субблока также влияет на время прогрева кэша. Больший его размер уменьшает время заполнения кэша, но увеличивает время реакции на запрос с хоста. Помимо этого, размер субблока также влияет на загрузку процессора, пропускную способность памяти и канала.


Для расчета примерного времени прогрева кэша можно воспользоваться следующим методом.

  • Т – время прогрева кэша в секундах
  • I – значение IOPS для HDD при случайном доступе
  • S – размер блока ввод/вывода
  • D – количество HDD
  • C – полный объем SSD
  • P - populate-on-read threshold или populate-on-write threshold

Тогда T = (C*P) / (I*S*D)
Для примера: 16 дисков с 250 IOPS, один SSD 480ГБ в качестве кэша, характер нагрузки – web-сервисы (64КБ) и populate-on-read threshold = 2.
Тогда время прогрева будет Т = (480ГБ*2) / (250*64КБ*16) ≈ 3932 сек ≈ 65.5 мин

Тестирование

Для начала рассмотрим процесс создания SSD-кэша

  1. После создания виртуального диска нажмите ↓, затем Set SSD Caching
  2. Выберите Enable
  3. Выберите конфигурацию из ниспадающего списка
  4. Нажмите Select Disks и выберите SSD, которые будут использоваться в качестве кэша
  5. Нажмите ОК

Ограничения

  • Только SSD могут использоваться в качестве кэша
  • SSD может быть назначен только одному виртуальному диску в каждый момент времени
  • Поддерживается до 8 SSD на один виртуальный диск
  • Поддерживается общий объем до 2.4ТБ SSD на систему
  • Для SSD-кэширования требуется лицензия, которая приобретается отдельно от системы

Результаты

Тестовая конфигурация:

  • HDD Seagate Constellation ES ST1000NM0011 1TB SATA 6Gb/s (x8)
  • SSD Intel SSD DC3500, SSDSC2BB480G4, 480GB, SATA 6Gb/s (x5)
  • RAID 5
  • I/O Type Database Service (8KB)
  • I/O pattern 8KB, random read 90% + write 10%
  • Virtual disk 2TB

Согласно формуле время прогрева кэша T = (2ТБ*2) / (244*8КБ*8) ≈ 275036 сек ≈ 76.4 ч




  • Сравнение производительности различных типов серверных накопителей (HDD, SSD, SATA DOM, eUSB)
  • Сравнение производительности новейших серверных RAID-контроллеров Intel и Adaptec (24 SSD)
  • Сравнение производительности серверных RAID-контроллеров
  • Производительность дисковой подсистемы серверов Intel на базе Xeon E5-2600 и Xeon E5-2400
  • Таблицы сравнительных характеристик: RAID-контроллеры , Серверные HDD , Серверные SSD
  • Ссылки на разделы прайс-листа: RAID-контроллеры , Серверные HDD , Серверные SSD

Большинство серверных приложений работают с дисковой подсистемой сервера в режиме случайного доступа, когда данные читаются или записываются небольшими блоками размером несколько килобайт, а сами эти блоки могут располагаться в дисковом массиве случайным образом.

Жесткие диски имеют среднее время доступа к произвольному блоку данных порядка нескольких миллисекунд. Это время необходимо для позиционирования головки диска над нужными данными. За одну секунду жесткий диск может прочитать (или записать) несколько сотен таких блоков. Этот показатель отражает производительность жесткого диска на случайных операциях ввода-вывода и измеряется величиной IOPS (Input Output per Second, операций ввода-вывода в секунду). То есть производительность случайного доступа для жесткого диска составляет несколько сотен IOPS.

Как правило, в дисковой подсистеме сервера несколько жестких дисков объединяются в RAID-массив, в котором они работают параллельно. При этом скорость операций случайного чтения для RAID-массива любого типа возрастает пропорционально количеству дисков в массиве, а вот скорость операций записи зависит не только от количества дисков, но также и от способа объединения дисков в RAID-массив.

Довольно часто дисковая подсистема является фактором, который ограничивает быстродействие сервера. При большом количестве одновременных запросов дисковая подсистема может достичь предела своей производительности и увеличение объема оперативной памяти или частоты процессора не даст никакого эффекта.

Радикальным способом увеличения производительности дисковой подсистемы является использование твердотельных накопителей (SSD-накопителей), в которых информация записывается в энергонезависимую flash-память. У SSD-накопителей время доступа к произвольному блоку данных составляет несколько десятков микросекунд (то есть на два порядка меньше, чем у жестких дисков), благодаря чему производительность даже одного SSD-накопителя на случайных операциях достигает 60"000 IOPS.

На следующих графиках приведены сравнительные показатели производительности RAID-массивов из 8-ми жестких дисков и 8-ми SSD-накопителей. Приведены данные для четырех различных типов RAID-массивов: RAID 0, RAID 1, RAID 5 и RAID 6. Чтобы не перегружать текст техническими подробностями, информацию о методике тестирования мы поместили в конце статьи.


Из диаграмм видно, что применение SSD-накопителей повышает производительность дисковой подсистемы сервера на операциях произвольного доступа от 20 до 40 раз. Однако широкому использованию SSD-накопителей мешают следующие серьезные ограничения.

Во-первых, современные SSD-накопители имеют небольшую емкость. Максимальная емкость жестких дисков (3TB) превосходит максимальную емкость серверных SSD-накопителей (300GB) в 10 раз. Во-вторых, SSD-накопители примерно в 10 раз дороже жестких дисков, если сравнивать стоимость 1GB дискового пространства. Поэтому построение дисковой подсистемы из одних только SSD-накопителей в настоящее время применяется довольно редко.

Однако можно использовать SSD-накопители в качестве кэш-памяти RAID-контроллера. О том, как это работает и что дает, давайте поговорим подробнее.

Дело в том, что даже в довольно большой дисковой серверной подсистеме емкостью в десятки терабайт объем "активных" данных, то есть данных, которые используются наиболее часто, относительно невелик. Например, если Вы работаете с базой данных, которая хранит записи за длительный период времени, активно использоваться скорее всего будет только небольшая часть данных, которая относится к текущему временному интервалу. Или если сервер предназначен для хостинга Интернет-ресурсов, большая часть запросов будет относиться к небольшому числу наиболее посещаемых страниц.

Таким образом, если эти "активные" (или "горячие") данные будут находиться не на "медленных" жестких дисках, а в "быстрой" кэш-памяти на SSD-накопителях, производительность дисковой подсистемы возрастет на порядок. При этом Вам не нужно заботится о том, какие данные должны быть размещены в кэш-памяти. После того, как в первый раз контроллер прочитает данные с жесткого диска, он оставит эти данные в кэш-памяти SSD и повторное чтение будет выполняться уже оттуда.

Более того, кэширование работает не только при чтении, но и при записи. Любая операция записи будет записывать данные не на жесткий диск, а в кэш-память на SSD-накопителях, поэтому операции записи также будут выполняться на порядок быстрее.

Практически механизм кэширования на SSD-накопителях может быть реализован на любом шести-гигабитном RAID-модуле или RAID-контроллере Intel второго поколения на базе микроконтроллера LSI2208: RMS25CB040, RMS25CB080, RMT3CB080, RMS25PB040, RMS25PB080, RS25DB080, RS25AB080, RMT3PB080. Эти RAID-модули и контроллеры применяются в серверах Team на базе процессоров Intel E5-2600 и E5-2400 (платформа Intel Sandy Bridge).

Чтобы использовать режим SSD-кэширования, необходимо установить на RAID-контроллер аппаратный ключ AXXRPFKSSD2. Кроме поддержки SSD-кэширования, этот ключ также ускоряет работу контроллера с "чистыми" SSD-дисками, когда они используются не в качестве кэш-памяти, а как обычные накопители. В этом случае можно достичь производительности на операциях случайного чтения-записи в 465"000 IOPS (режим FastPath I/O).

Давайте посмотрим на результаты тестирования производительности все того же массива из восьми жестких дисков, но уже с использованием четырех SSD-накопителей в качестве кэш-памяти и сравним их с данными этого массива без кэширования.



Мы выполнили тестирование для двух вариантов организации SSD-кэш. В первом варианте 4 SSD-накопителя были объединены в RAID-массив нулевого уровня (R0), а во-втором случае из этих 4-х SSD-накопителей был образован зеркальный массив (R1). Второй вариант немного медленнее на операциях записи, зато он обеспечивает резервирование данных в SSD-кэш, поэтому предпочтительнее.

Интересно, что производительность чтения и записи практически не зависит от типа "основного" RAID-массива жестких дисков, а определяется только скоростью работы SSD-накопителей кэш-памяти и типом ее RAID-массива. Более того, "кэшированный" RAID 6 из жестких дисков на операциях записи оказывается быстрее, чем "чистый" RAID 6 из SSD-накопителей (29"300 или 24"900 IOPS против 15"320 IOPS). Объяснение простое - фактически мы измеряем производительность не RAID 6, а RAID 0 или RAID 1 кэш-памяти, а эти массивы быстрее на записи даже при меньшем числе дисков.

В качестве кэш-памяти можно использовать и один SSD-накопитель, однако мы рекомендуем этого не делать, поскольку не обеспечивается резервирование данных кэш-памяти. В случае выхода такого SSD-накопителя из строя, целостность данных будет нарушена. Для SSD-кэширования лучше использовать как минимум два SSD-накопителя, объединенный в RAID-массив первого уровня ("зеркало").

Надеемся, что информация, изложенная в данной статье, поможет Вам в выборе эффективной конфигурации дисковой подсистемы сервера. Кроме того, необходимую техническую консультацию всегда готовы оказать наши менеджеры и инженеры.

Конфигурация тестового стенда и методика тестирования

Серверная платформа — Team R2000GZ
Расширитель SAS-портов Intel RES2CV360 36 Port Expander Car
RAID-контроллер — Intel RS25DB080 с ключом AXXRPFKSSD2
HDD — 8 дисков SAS 2,5" Seagate Savvio 10K.5 300GB 6Gb/s 10000RPM 64MB Cache
SSD — 8 или 4 накопителя SSD SATA 2.5" Intel 520 Series 180GB 6Gb/s

Тестирование выполнялось при помощи программы Intel IO Meter.

Для каждого варианта аппаратной конфигурации выбирались оптимальные настройки кэш-памяти контроллера.

Объем виртуального диска для тестирования — 50GB. Такой объем был выбран для того, чтобы тестируемый диск мог полностью поместится в SSD-кэш.

Прочие параметры:
Strip Size — 256KB.
Размер блока данных для последовательных операций — 1MB.
Размер блока данных для операций случайного доступа — 4 KB.
Глубина очереди — 256.

Здравствуйте админ! Хочу купить жёсткий диск объёмом 1-2 Тб, один знакомый компьютерщик посоветовал купить диск SSHD (гибрид жёсткого диска и твердотельного накопителя SSD), так как он работает заметно быстрее обычного HDD, но не такой дорогой, как твердотельный накопитель SSD. Что вы можете сказать о таких дисках?

Привет друзья! Очень хороший вопрос. Да, гибридный жёсткий диск SSHD (Solid State Hybrid Drive) работает быстрее обычного жёсткого диска на 30 %, и дороже примерно на столько же. Если обычный жёсткий диск на 1 Тб стоит 4 000 рублей, то SSHD можно купить за 5 400 рублей. Выпускаются такие диски, как для обычных компьютеров, так и для ноутбуков.

Во-первых, ч то из себя представляет гибридный жёсткий диск

Технология производства жёстких дисков (единственного комплектующего компьютера имеющего движущиеся механические части) давно зашла в тупик и увеличить быстродействие работы жёсткого диска производственным путём практически невозможно, что доказывает появление на рынке твердотельных накопителей SSD и гибридных жёстких дисков SSHD. Но если твердотельный накопитель представляет из себя полностью немеханическое запоминающее устройство на основе микросхем памяти, то гибридный жёсткий диск, это в первую очередь обычный жёсткий диск с распаянной на нём платой быстрой флеш-памяти MLC (объём 8 Гб), применяемой в производстве твердотельных накопителей, то есть получается, что SSHD, это гибрид обычного жёсткого диска и твердотельного накопителя SSD .

Во-вторых, почему гибридный жёсткий диск SSHD работает быстрее обычного жёсткого диска

В гибридных дисках SSHD от Seagate применяется технология самообучения - Seagate Adaptive Memory , исследующая с первых секунд работы установленную на диске операционную систему, в результате чаще всего используемые программы и файлы копируются на флеш-память диска SSHD, к таким файлам относятся прежде всего элементы участвующие в загрузке операционной системы, а значит Windows со второго, третьего раза будет загружаться быстрее, ведь загрузка винды будет происходить уже из флеш-памяти. Например, на моём компьютере загрузка Windows 8.1, установленной на обычный HDD, происходит в течении 35-40 секунд, а на SSHD - 20 секунд, на обычном твердотельном накопителе SSD - 15 секунд. Тоже самое относится к постоянно используемым вами приложениям, запускаться они будут несколько быстрее. Возьмём например, требовательную к ресурсам компьютера современную игру, в которую вы постоянно играете, по моим наблюдениям, загружаться такая игра будет в три раза быстрее, чем на обычном HDD.

Гибридные жёсткий диск SSHD, это золотая середина

Вообще, идеальный вариант конфигурации накопителей в системном блоке обычного домашнего пользователя выглядит так: покупается два накопителя, первый - твердотельник SSD (объём 120-240 Гб) под установку операционной системы, а второй - обычный HDD для хранения файлов (объём) 2-3 ТБ, нужно на всё это примерно 10 000 рублей. А если вы приобретёте один гибридный диск SSHD на 1 ТБ, то он обойдётся вам в 5 400 рублей, а SSHD на 2 ТБ - 7 000 рублей. Конечно летать всё (как в случае с SSD) не будет, но может вам такие скорости и не нужны. Выходит гибридный диск SSHD, это золотая середина - за небольшие деньги вы приобретаете хорошее быстродействие и большой объём дискового пространства.

Какой SSHD купить

До недавнего времени гибридные диски SSHD производила компания, которая их и разработала - Seagate. Всего сейчас на рынке присутствуют три модели Seagate Desktop SSHD объемом 1, 2, 4 Тбайт.

Seagate Desktop SSHD ST1000DX001 1 Тб

Seagate Desktop SSHD ST2000DX001 2 Тб

Seagate Desktop SSHD ST4000DX001 4 Тб

Также с недавнего времени SSHD стала выпускать Western Digital, но на рынке они представлены мало, а та модель, которая попалась мне - WD Blue SSHD, WD40E31X объёмом 4 Тб ничем не отличалась по скоростным характеристикам от аналогичной модели Seagate ST4000DX001 4 Тб.

Предлагаю вам в сегодняшней статье рассмотреть модель Seagate Desktop SSHD ST2000DX001 объём 2 Тб и вот почему. Если взять модель Seagate Desktop SSHD 1 Тб, то размера дискового пространства 1 Тб уже мало для современного пользователя компьютера. Если взять модель Seagate Desktop SSHD 4 Тб, то наоборот, большой объём 4 Тб дискового пространства не всем нужен, да и цена его достаточно высокая (11 500 рублей), и что ещё немаловажно - скорость вращения шпинделя этого накопителя: 5900 об/мин, то есть он чуть медленнее, чем другие SSHD объемом 1 и 2 Тбайт (скорость вращения шпинделя 7200 об/мин) и на быстродействии операционной системы это обязательно скажется.

Итак, я вас уговорил и перед нами модель Seagate Desktop SSHD ST2000DX001 2 Тб

При ближайшем рассмотрении гибридный диск Seagate Desktop SSHD ST2000DX001 2 Тб оказался обычным жёстким диском, только вот написано на нём SSHD.

Объем дискового пространства - 2 Тб

Объем SSD буфера - 8 Гб

Объем кэш-памяти - 64 Мб

Скорость вращения шпинделя - 7200 rpm

На обратной стороне накопителя видим специальную печатную плату Adaptive Memory, с распаянными 8 Гбайт быстрой MLC-памяти и контроллером «гибрида».

Очень просто устанавливаем накопитель в системный блок.

SMART винчестера в программе CrystalDiskInfo и Виктории.

Гибридный диск новый и отработал 0 часов.

Тесты на чтение и запись

Чтобы убедиться в том, что наш диск на самом деле хорош, произведём несколько тестов на чтение и запись с помощью специальных программ: CrystalDiskMark 2.0, ATTO Disk Benchmark и SiSoftware Sandra. Данные утилиты произведут последовательные чтение и запись информации на наш гибридный диск небольшими блоками, затем покажут нам результат.

CrystalDiskMark 2.0

Самая простая и часто используемая в этом отношении программа, скачать можно на моём Яндекс.Диске

Утилита очень простая, выберите только нужную букву диска (в нашем случае E:)

И нажмите AII , начнётся тест SSHD диска на производительность.

1. Тест последовательного чтения и записи большими блоками данных;

2. Тест случайного чтения и записи блоками 512 Кб;

3. Тест случайного чтения и записи блоками 4 Кб;

Могу сказать, что результат очень достойный, особенно можно отметить запись блоками 512 Кб и 4 Кб.

ATTO Disk Benchmark

Протестируем гибридный диск ещё одной программой - ATTO Disk Benchmark .

Выбираем букву диска гибридного накопителя SSHD и жмём Start.

Результат.

SiSoftware Sandra

Глобальная программа способная произвести диагностику всех комплектующих компьютера и имеющая свой официальный рейтинг.

В итоге, наш диск опережает 94% результатов. Отличная производительность.

Недостатки SSHD

По моему мнению, единственный минус SSHD, это небольшой объём встроенной флеш -памяти 8 Гб, было бы здорово, если бы её размер вырос до 32 Гб, тогда в кэш твердотельника помещалось больше работающих программ и быстродействие Windows было бы точно таким, как если бы она была установлена на SSD.



Загрузка...