sonyps4.ru

Метод Гаусса-Жордана. Примеры решения систем линейных алгебраических уравнений методом Гаусса-Жордана

Каждой системе линейных уравнений поставим в соответствие расширенную матрицу , полученную присоединением к матрице А столбца свободных членов:

Метод Жордана–Гаусса применяется для решения системы m линейных уравнений с n неизвестными вида:

Данный метод заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе уравнений с матрицей определенного вида.

Над строками расширенной матрицы осуществляем следующие элементарные преобразования:

1. перестановка двух строк ;

2. умножение строки на любое число, отличное от нуля ;

3. прибавление к одной строке другой строки, умноженной на некоторое число ;

4. отбрасывание нулевой строки (столбца) .

Пример 2.11. Решить методом Жордана–Гаусса системы линейных уравнений:

а ) Х 1 + Х 2 + 2Х 3 = -1

2Х 1 - Х 2 + 2Х 3 = -4

4Х 1 + Х 2 + 4Х 3 = -2

Решение: Составим расширенную матрицу:

Итерация 1

В качестве направляющего элемента выбираем элемент . Преобразуем первый столбец в единичный. Для этого ко второй и третьей строкам прибавляем первую строку, соответственно умноженную на (-2) и (-4). Получим матрицу:

На этом первая итерация закончена.

Итерация 2

Выбираем направляющий элемент . Так как , то делим вторую строку на -3. Затем умножаем вторую строку соответственно на (-1) и на 3 и складываем соответственно с первой и третьей строками. Получим матрицу

Итерация 3

Выбираем направляющий элемент . Так как , то делим третью строку на (-2). Преобразуем третий столбец в единичный. Для этого умножаем третью строку соответственно на (-4/3) и на (-2/3) и складываем соответственно с первой и второй строками. Получим матрицу

откуда Х 1 = 1, Х 2 = 2, Х 3 = -2.

Закончив решение, на этапе обучения необходимо выполнять проверку, подставив найденные значения в исходную систему, которая при этом должна обратиться в верные равенства.

б ) Х 1 – Х 2 + Х 3 – Х 4 = 4

Х 1 + Х 2 + 2Х 3 +3Х 4 = 8

2Х 1 +4Х 2 + 5Х 3 +10Х 4 = 20

2Х 1 – 4Х 2 + Х 3 – 6Х 4 = 4

Решение: Расширенная матрица имеет вид:

Применяя элементарные преобразования, получим:

Исходная система эквивалентна следующей системе уравнений:

Х 1 – 3Х 2 – 5Х 4 = 0

2Х 2 + Х 3 + 4Х 4 = 4

Последние две строки матрицы A (2) являются линейно зависимыми.

Определение. Строки матрицы e 1 , e 2 ,…, e m называются линейно зависимыми , если существуют такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

где 0 =(0, 0…0). Строки матрицы являются линейно независимыми , когда комбинация этих строк равна нулю тогда и только тогда, когда все коэффициенты равны нулю.



В линейной алгебре очень важно понятие ранга матрицы , т.к. оно играет очень большое значение при решении систем линейных уравнений.

Теорема 2.3 (о ранге матрицы). Ранг матрицы равен максимальному числу её линейно независимых строк или столбцов, через которые линейно выражаются все остальные её строки (столбцы).

Ранг матрицы A (2) равен 2, т.к. в ней максимальное число линейно независимых строк равно 2 (это первые две строки матрицы).

Теорема 2.4 (Кронекера–Капели). Система линейных уравнений совместна и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

1. Если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система имеет единственное решение.

2. Если ранг матрицы системы меньше числа переменных, т.е. r < n, то система неопределённая и имеет бесконечное множество решений.

В данном случае система имеет 4 переменных, а её ранг равен 2, следовательно, она имеет бесконечное множество решений.

Определение. Пусть r < n , r переменных x 1 , x 2 ,…, x r называются базисными , если определитель матрицы из коэффициентов при них (базисный минор ) отличен от нуля. Остальные n – r переменных называются свободными .

Определение. Решение системы, в котором все n – r свободных переменных равны нулю, называется базисным .

Совместная система m линейных уравнений с n переменными (m < n ) имеет бесконечное множество решений, среди которых базисных решений конечное число, не превосходящее , где .

В нашем случае , т.е. система имеет не более 6 базисных решений.

Общее решение имеет вид:

Х 1 = 3Х 2 +5Х 4

Х 3 = 4 – 2Х 2 – 4Х 4

Найдем базисные решения. Для этого полагаем Х 2 = 0, Х 4 = 0, тогда Х 1 =0, Х 3 = 4. Базисное решение имеет вид: (0, 0, 4, 0).

Получим другое базисное решение. Для этого в качестве свободных неизвестных примем Х 3 и Х 4 . Выразим неизвестные Х 1 и Х 2 через неизвестные Х 3 и Х 4:

Х 1 = 6 – 3/2Х 2 – Х 4

Х 2 = 2 – 1/2Х 3 – 2Х 4 .

Тогда базисное решение имеет вид: (6, 2, 0, 0).

Пример 2.12. Решить систему:

X 1 + 2X 2 – X 3 = 7

2X 1 – 3X 2 + X 3 = 3

4X 1 + X 2 – X 3 = 16

Решение.Преобразуем расширенную матрицу системы

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво – оно привелось к неверному равенству 0 = –1, следовательно, данная система несовместна. Данный вывод можно также получить, если заметить, что ранг матрицы системы равен 2, тогда как ранг расширенной матрицы системы равен 3.

Метод Гаусса-Жордана предназначен для решения систем линейных алгебраических уравнений (СЛАУ). Он является модификацией метода Гаусса . Если метод Гаусса осуществляется в два этапа (прямой ход и обратный) то метод Гаусса-Жордана позволяет решить систему в один этап. Подробности и непосредственная схема применения метода Гаусса-Жордана описаны в примерах.

Во всех примерах $A$ обозначает матрицу системы, $\widetilde{A}$ - расширенную матрицу системы. О матричной форме записи СЛАУ можно прочесть .

Пример №1

Решить СЛАУ $ \left\{ \begin{aligned} & 4x_1-7x_2+8x_3=-23;\\ & 2x_1-4x_2+5x_3=-13;\\ & -3x_1+11x_2+x_3=16. \end{aligned} \right.$ методом Гаусса-Жордана.

Давайте перейдём от последней полученной нами матрице к системе:

$$ \left\{ \begin{aligned} & 0\cdot x_1+1\cdot x_2+0\cdot x_3=1;\\ & 1\cdot x_1+0\cdot x_2+0\cdot x_3=-2;\\ & 0\cdot x_1+0\cdot x_2+1\cdot x_3=-1. \end{aligned} \right. $$

Упрощая полученную систему, имеем:

$$ \left\{ \begin{aligned} & x_2=1;\\ & x_1=-2;\\ & x_3=-1. \end{aligned} \right. $$

Полное решение без пояснений выглядит так:

Хоть этот способ выбора разрешающих элементов вполне допустим, но предпочтительнее выбирать в качестве разрешающих элементов диагональные элементы матрицы системы. Мы рассмотрим этот способ ниже.

Выбор разрешающих элементов на главной диагонали матрицы системы.

Так как этот способ решения полностью аналогичен предыдущему (за исключением выбора разрешающих элементов), то подробные пояснения пропустим. Принцип выбора разрешающих элементов прост: в первом столбце выбираем элемент первой строки, во втором столбце берём элемент второй строки, в третьем столбце - элемент третьей строки и так далее.

Первый шаг

В первом столбце выбираем элемент первой строки, т.е. в качестве разрешающего имеем элемент 4. Понимаю, что выбор числа 2 кажется более предпочтительным, так как это число всё-таки меньше, нежели 4. Для того, чтобы число 2 в первом столбце переместилось на первое место, поменяем местами первую и вторую строки:

$$ \left(\begin{array} {ccc|c} 4 & -7 & 8 & -23\\ 2 & -4& 5 & -13 \\ -3 & 11 & 1 & 16 \end{array} \right)\rightarrow \left(\begin{array} {ccc|c} 2 & -4& 5 & -13\\ 4 & -7 & 8 & -23 \\ -3 & 11 & 1 & 16 \end{array} \right) $$

Итак, разрешающий элемент представлен числом 2. Точно так же, как и ранее, разделим первую строку на 2, а затем обнулим элементы первого столбца:

$$ \left(\begin{array} {ccc|c} 2 & -4& 5 & -13\\ 4 & -7 & 8 & -23 \\ -3 & 11 & 1 & 16 \end{array} \right) \begin{array} {l} I:2 \\\phantom{0} \\ \phantom{0} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2 \\4 & -7 & 8 & -23\\ -3 & 11 & 1 & 16 \end{array} \right) \begin{array} {l} \phantom{0} \\ II-4\cdot I\\ III+3\cdot I \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2\\0 & 1 & -2 & 3\\ 0 & 5 & 17/2 & -7/2 \end{array} \right). $$

Второй шаг

На втором шаге требуется обнулить элементы второго столбца. В качестве разрешающего элемента выбираем элемент второй строки, т.е. 1. Разрешающий элемент уже равен единице, поэтому никаких строк менять местами не будем. Кстати сказать, если бы мы захотели поменять местами строки, то первую строку трогать не стали бы, так как она уже была использована на первом шаге. А вот вторую и третью строки запросто можно менять местами. Однако, повторюсь, в данной ситуации менять местами строки не нужно, ибо разрешающий элемент уже оптимален - он равен единице.

$$ \left(\begin{array} {ccc|c} 1 & -2& 5/2 & -13/2\\0 & 1 & -2 & 3\\ 0 & 5 & 17/2 & -7/2 \end{array} \right) \begin{array} {l} I+2\cdot II \\ \phantom{0}\\ III-5\cdot II \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 37/2 & -37/2 \end{array} \right). $$

Второй шаг окончен. Переходим к третьему шагу.

Третий шаг

На третьем шаге требуется обнулить элементы третьего столбца. В качестве разрешающего элемента выбираем элемент третьей строки, т.е. 37/2. Разделим элементы третьей строки на 37/2 (чтобы разрешающий элемент стал равен 1), а затем обнулим соответствующие элементы третьего столбца:

$$ \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 37/2 & -37/2 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\ III:\frac{37}{2} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & -3/2 & -1/2 \\ 0 & 1 & -2 & 3\\ 0 & 0 & 1 & -1 \end{array} \right) \begin{array} {l} I+2\cdot III\\II+3/2\cdot III\\ \phantom{0} \end{array} \rightarrow \left(\begin{array} {ccc|c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & -1 \end{array} \right). $$

Ответ получен: $x_1=-2$, $x_2=1$, $x_3=-1$. Полное решение без пояснений выглядит так:

Все остальные примеры на этой странице будут решены именно вторым способом: в качестве разрешающих будем выбирать диагональные элементы матрицы системы.

Ответ : $x_1=-2$, $x_2=1$, $x_3=-1$.

Пример №2

Решить СЛАУ $ \left\{ \begin{aligned} & 3x_1+x_2+2x_3+5x_4=-6;\\ & 3x_1+x_2+2x_4=-10;\\ & 6x_1+4x_2+11x_3+11x_4=-27;\\ & -3x_1-2x_2-2x_3-10x_4=1. \end{aligned} \right.$ методом Гаусса-Жордана.

Запишем расширенную матрицу данной системы : $\widetilde{A}=\left(\begin{array} {cccc|c} 3 & 1 & 2 & 5 & -6\\ 3 & 1& 0 & 2 & -10 \\ 6 & 4 & 11 & 11 & -27 \\ -3 & -2 & -2 & -10 & 1 \end{array} \right)$.

В качестве разрешающих элементов станем выбирать диагональные элементы матрицы системы: на первом шаге возьмём элемент первой строки, на втором шаге элемент второй строки и так далее.

Первый шаг

Нам нужно обнулить соответствующие элементы первого столбца. В качестве разрешающего элемента возьмём элемент первой строки, т.е. 3. Соответственно первую строку придётся разделить на 3, чтобы разрешающий элемент стал равен единице. А затем обнулить все элементы первого столбца, кроме разрешающего:

$$ \left(\begin{array}{cccc|c} 3 & 1 & 2 & 5 & -6\\ 3 & 1 & 0 & 2 & -10\\ 6 & 4 & 11 & 11 & -27\\ -3 & -2 & -2 & -10 & 1\end{array}\right) \begin{array} {l} I:3\\ \phantom{0}\\\phantom{0}\\\phantom{0}\end{array} \rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 3 & 1 & 0 & 2 & -10\\ 6 & 4 & 11 & 11 & -27\\ -3 & -2 & -2 & -10 & 1\end{array}\right) \begin{array} {l} \phantom{0}\\ II-3\cdot I\\III-6\cdot I\\IV+3\cdot I\end{array} \rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 0 & -2 & -3 & -4\\ 0 & 2 & 7 & 1 & -15\\ 0 & -1 & 0 & -5 & -5\end{array}\right). $$

Второй шаг

Переходим к обнулению соответствующих элементов второго столбца. В качестве разрешающего элемента мы уславливались взять элемент второй строки, но сделать этого мы не в силах, так как нужный элемент равен нулю. Вывод: будем менять местами строки. Первую строку трогать нельзя, так как она уже использовалась на первом шаге. Выбор небогат: или меняем местами вторую и третью строки, или же меняем местами четвёртую и вторую. Так как в четвёртой строке наличествует (-1), то пусть в "обмене" поучавствует именно четвёртая строка. Итак, меняем местами вторую и четвёртую строки:

$$ \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 0 & -2 & -3 & -4\\ 0 & 2 & 7 & 1 & -15\\ 0 & -1 & 0 & -5 & -5\end{array}\right)\rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & -1 & 0 & -5 & -5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) $$

Вот теперь всё в норме: разрешающий элемент равен (-1). Бывает, кстати, что смена мест строк невозможна, но это обговорим в следующем примере №3. А пока что делим вторую строку на (-1), а затем обнуляем элементы второго столбца. Обратите внимание, что во втором столбце элемент, расположенный в четвёртой строке, уже равен нулю, поэтому четвёртую строку трогать не будем.

$$ \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & -1 & 0 & -5 & -5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \begin{array} {l} \phantom{0}\\II:(-1) \\\phantom{0}\\\phantom{0}\end{array} \rightarrow \left(\begin{array}{cccc|c} 1 & 1/3 & 2/3 & 5/3 & -2\\ 0 & 1 & 0 & 5 & 5\\ 0 & 2 & 7 & 1 & -15\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \begin{array} {l} I-1/3\cdot II\\ \phantom{0} \\III-2\cdot II\\\phantom{0}\end{array} \rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 7 & -9 & -25\\ 0 & 0 & -2 & -3 & -4\end{array}\right). $$

Третий шаг

Приступаем к обработке третьего столбца. В качестве разрешающего элемента мы условились брать диагональные элементы матрицы системы. Для третьего шага это означает выбор элемента, расположенного в третьей строке. Однако если мы просто возьмём элемент 7 в качестве разрешающего, то всю третью строку придётся делить на 7. Мне кажется, что разделить на (-2) попроще. Поэтому поменяем местами третью и четвёртую строки, и тогда разрешающим элементом станет (-2):

$$ \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 7 & -9 & -25\\ 0 & 0 & -2 & -3 & -4\end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & -2 & -3 & -4\\ 0 & 0 & 7 & -9 & -25\end{array}\right) $$

Разрешающий элемент - (-2). Делим третью строку на (-2) и обнуляем соответствующие элементы третьего столбца:

$$ \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & -2 & -3 & -4\\ 0 & 0 & 7 & -9 & -25\end{array}\right) \begin{array} {l} \phantom{0}\\ \phantom{0} \\III:(-2)\\\phantom{0}\end{array}\rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 2/3 & 0 & -11/3\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 7 & -9 & -25\end{array}\right) \begin{array} {l} I-2/3\cdot III\\ \phantom{0} \\ \phantom{0}\\IV-7\cdot III\end{array}\rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & -39/2 & -39\end{array}\right). $$

Четвёртый шаг

Переходим к обнулению четвёртого столбца. Разрешающий элемент расположен в четвёртой строке и равен числу $-\frac{39}{2}$.

$$ \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & -39/2 & -39\end{array}\right) \begin{array} {l} \phantom{0}\\ \phantom{0} \\ \phantom{0}\\IV:\left(-\frac{39}{2}\right) \end{array}\rightarrow \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -5\\ 0 & 1 & 0 & 5 & 5\\ 0 & 0 & 1 & 3/2 & 2\\ 0 & 0 & 0 & 1 & 2\end{array}\right) \begin{array} {l} I+IV\\ II-5\cdot IV \\ III-3/2\cdot IV \\ \phantom{0} \end{array}\rightarrow\\ \rightarrow\left(\begin{array}{cccc|c} 1 & 0 & 0 & 0 & -3\\ 0 & 1 & 0 & 0 & -5\\ 0 & 0 & 1 & 0 & -1\\ 0 & 0 & 0 & 1 & 2\end{array}\right). $$

Решение окончено. Ответ таков: $x_1=-3$, $x_2=-5$, $x_3=-1$, $x_4=2$. Полное решение без пояснений:

Ответ : $x_1=-3$, $x_2=-5$, $x_3=-1$, $x_4=2$.

Пример №3

Решить СЛАУ $\left\{\begin{aligned} & x_1-2x_2+3x_3+4x_5=-5;\\ & 2x_1+x_2+5x_3+2x_4+9x_5=-3;\\ & 3x_1+4x_2+7x_3+4x_4+14x_5=-1;\\ & 2x_1-4x_2+6x_3+11x_5=2;\\ & -2x_1+14x_2-8x_3+4x_4-7x_5=20;\\ & -4x_1-7x_2-9x_3-6x_4-21x_5=-9. \end{aligned}\right.$ методом Гаусса-Жордана. Если система является неопределённой, указать базисное решение.

Подобные примеры разбираются в теме "Общее и базисное решения СЛАУ" . Во второй части упомянутой темы данный пример решён с помощью метод Гаусса . Мы же решим его с помощью метода Гаусса-Жордана. Пошагово разбивать решение не станем, так как это уже было сделано в предыдущих примерах.

$$ \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 2 & 1 & 5 & 2 & 9 & -3\\ 3 & 4 & 7 & 4 & 14 & -1\\ 2 & -4 & 6 & 0 & 11 & 2\\ -2 & 14 & -8 & 4 & -7 & 20\\ -4 & -7 & -9 & -6 & -21 & -9 \end{array}\right) \begin{array} {l} \phantom{0} \\ II-2\cdot I\\ III-3\cdot I\\ IV-2\cdot I\\ V+2\cdot I\\VI+4\cdot I \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 0 & 5 & -1 & 2 & 1 & 7\\ 0 & 10 & -2 & 4 & 2 & 14\\ 0 & 0 & 0 & 0 & 3 & 12\\ 0 & 10 & -2 & 4 & 1 & 10\\ 0 & -15 & 3 & -6 & -5 & -29 \end{array}\right) \begin{array} {l} \phantom{0} \\ II:5 \\ \phantom{0}\\ \phantom{0}\\ \phantom{0} \\ \phantom{0}\end{array} \rightarrow \\ \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 4 & -5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 10 & -2 & 4 & 2 & 14\\ 0 & 0 & 0 & 0 & 3 & 12\\ 0 & 10 & -2 & 4 & 1 & 10\\ 0 & -15 & 3 & -6 & -5 & -29 \end{array}\right) \begin{array} {l} I+2\cdot II \\ \phantom{0}\\ III-10\cdot II\\ IV:3\\ V-10\cdot II\\VI+15\cdot II \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right). $$

Полагаю, что одно из сделанных преобразований всё-таки требует пояснения: $IV:3$. Все элементы четвёртой строки нацело делились на три, поэтому сугубо из соображений упрощения мы разделили все элементы этой строки на три. Третья строка в преобразованной матрице стала нулевой. Вычеркнем нулевую строку:

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right) $$

Нам пора переходить к третьему шагу, на котором должны быть обнулены элементы третьего столбца. Однако диагональный элемент (третья строка) равен нулю. И смена мест строк ничего не даст. Первую и вторую строки мы уже использовали, поэтому их трогать мы не можем. А четвёртую и пятую строки трогать нет смысла, ибо проблема равенства нулю разрешающего элемента никуда не денется.

В этой ситуации проблема решается крайне незамысловато. Мы не можем обработать третий столбец? Хорошо, перейдём к четвёртому. Может, в четвёртом столбце элемент третьей строки будет не равен нулю. Однако четвёртый столбец "болеет" той же проблемой, что и третий. Элемент третьей строки в четвёртом столбце равен нулю. И смена мест строк опять-таки ничего не даст. Четвёртый столбец тоже не можем обработать? Ладно, перейдём к пятому. А вот в пятом столбце элемент третьей строки очень даже не равен нулю. Он равен единице, что довольно-таки хорошо. Итак, разрешающий элемент в пятом столбце равен 1. Разрешающий элемент выбран, поэтому осуществим дальшейшие преобразования метода Гаусса-Жордана:

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 22/5 & -11/5\\ 0 & 1 & -1/5 & 2/5 & 1/5 & 7/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & -2 & -8 \end{array}\right) \begin{array} {l} I-22/5\cdot III \\ II-1/5\cdot III \\ \phantom{0}\\ IV+III\\ V+2\cdot III \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \\ \rightarrow\left|\text{Удаляем нулевые строки}\right|\rightarrow \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4 \end{array}\right)$$

Мы привели матрицу системы и расширенную матрицу системы к ступенчатому виду. Ранги обеих матриц равны $r=3$, т.е. надо выбрать 3 базисных переменных. Количество неизвестных $n=5$, поэтому нужно выбрать $n-r=2$ свободных переменных. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли данная система является неопределённой (т.е. имеет бесконечное количество решений). Для нахождения решений системы составим "ступеньки":

На "ступеньках" стоят элементы из столбцов №1, №2, №5. Следовательно, базисными будут переменные $x_1$, $x_2$, $x_5$. Свободными переменными, соответственно, будут $x_3$, $x_4$. Столбцы №3 и №4, соответствующие свободным переменным, перенесём за черту, при этом, конечно, не забыв сменить им знаки.

$$ \left(\begin{array}{ccccc|c} 1 & 0 & 13/5 & 4/5 & 0 & -99/5\\ 0 & 1 & -1/5 & 2/5 & 0 & 3/5\\ 0 & 0 & 0 & 0 & 1 & 4 \end{array}\right)\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -99/5 & -13/5 & -4/5\\ 0 & 1 & 0 & 3/5 & 1/5 & -2/5\\ 0 & 0 & 1 & 4 & 0 & 0\end{array}\right). $$

Из последней матрицы получим общее решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5}-\frac{13}{5}x_3-\frac{4}{5}x_4;\\ & x_2=\frac{3}{5}+\frac{1}{5}x_3-\frac{2}{5}x_4;\\ & x_3 \in R;\\ & x_4\in R;\\ & x_5=4. \end{aligned}\right.$. Базисное решение найдём, приняв свободные переменные равными нулю, т.е. $x_3=0$, $x_4=0$:

$$ \left\{\begin{aligned} & x_1=-\frac{99}{5};\\ & x_2=\frac{3}{5};\\ & x_3=0;\\ & x_4=0;\\ & x_5=4. \end{aligned}\right. $$

Задача решена, осталось лишь записать ответ.

Ответ : Общее решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5}-\frac{13}{5}x_3-\frac{4}{5}x_4;\\ & x_2=\frac{3}{5}+\frac{1}{5}x_3-\frac{2}{5}x_4;\\ & x_3 \in R;\\ & x_4\in R;\\ & x_5=4. \end{aligned}\right.$, базисное решение: $\left\{\begin{aligned} & x_1=-\frac{99}{5};\\ & x_2=\frac{3}{5};\\ & x_3=0;\\ & x_4=0;\\ & x_5=4. \end{aligned}\right.$.

Как известно, метод Жордана-Гаусса, он же метод последовательного исключения неизвестных, является модификацией метода Гаусса решения систем линейных алгебраических уравнений (СЛАУ).

Метод базируется на элементарных преобразованиях (переводящих систему в эквивалентную), к которым относятся:

  • прибавление к обеим частям уравнения системы другого уравнения той же системы, умноженного на число, отличное от нуля;
  • перестановка местами уравнений в системе;
  • удаление из системы уравнений вида 0 = 0.

В отличие от метода Гаусса, на каждом шаге одна переменная исключается из всех уравнений, кроме одного.

Шаг метода состоит в следующем:

  • выбрать в очередном уравнении неизвестное с коэффициентом, отличным от нуля (разрешающим элементом);
  • разделить выбранное уравнение на разрешающий элемент;
  • с помощью выбранного уравнения исключить неизвестное при разрешающем элементе из всех остальных уравнений;
  • на следующем шаге аналогично исключается другое неизвестное из всех уравнений, кроме одного;
  • процесс продолжается, пока не будут использованы все уравнения.

Алгоритмизировать это можно так:

Для СЛАУ в матричном виде A*x=b (матрица A размерности m*n , совсем необязательно квадратная) составляется следующая таблица:

В таблице выбран разрешающий элемент a r,s ≠0 , тогда r - разрешающая строка, s - разрешающий столбец.

Переход к следующей таблице выполняется по правилам:

1. вычисляются элементы разрешающей строки: a" r,j =a r,j /a r,s - то есть, r-строка таблицы делится на разрешающий элемент;

2. все элементы разрешающего столбца, кроме a r,s , равного единице, становятся равны нулю;

3. элементы вне разрешающих строки и столбца вычисляются по формуле, изображённой ниже:


Легко не запутаться, если увидеть, что числитель этой формулы похож на вычисление определителя матрицы 2 на 2.

4. При ручном расчёте значение в последнем контрольном столбце сравнивается с суммой предыдущих элементов строки. Если значения не совпадают, ошибки надо искать в данной строке. При автоматизированном расчёте контрольный столбец можно опустить.

Возможны следующие случаи:

1. В процессе исключений левая часть уравнения системы обращается в 0, а правая b≠0 , тогда система не имеет решения.

2. Получается тождество 0 = 0 - уравнение является линейной комбинацией остальных и строка нулей может быть вычеркнута из системы.

3. После использования всех уравнений для исключения неизвестных, таблица либо содержит искомое решение, либо показывает несовместность системы ограничений.

Запрограммируем метод в Excel одной формулой, изменять которую должно быть не слишком трудоёмко. Например, для решения СЛАУ


заполним коэффициентами системы ячейки листа от A1 до D4 включительно, выберем разрешающий элемент a 1,1 =1 , а первый шаг метода сделаем в ячейке A6 , куда загоним "универсальную" формулу для преобразования Жордана-Гаусса:

ЕСЛИ(СТРОКА($A$1)=СТРОКА(A1);A1/$A$1;
ЕСЛИ(СТОЛБЕЦ($A$1)=СТОЛБЕЦ(A1);0;(A1*$A$1-
ДВССЫЛ(АДРЕС(СТРОКА(A1);СТОЛБЕЦ($A$1)))*
ДВССЫЛ(АДРЕС(СТРОКА($A$1);СТОЛБЕЦ(A1))))/$A$1))


На следующем шаге разрешающим элементом может быть, например, a 2,2 =1 (ячейка B7). Нам останется скопировать формулу из A6 в A11 (по пустой строке оставляем, чтоб визуально разделить шаги метода), войти в режим редактирования формулы (двойной щелчок по ячейке или выбрать её и нажать клавишу F2) и поправить (аккуратно перетащить мышкой за границу) все закреплённые ссылки с ячейки A1 на B7 .

Конечно, можно заменить везде в формуле закреплённую ссылку $A$1 на конструкцию вида ДВССЫЛ(ЯЧЕЙКА) , образующую динамический адрес ссылки. Скажем, ДВССЫЛ(F8) , а в ячейке F8 будет автоматически формироваться адрес ячейки разрешающего элемента по заданным пользователем номеру строки и столбца. Тогда для этих номеров строки и столбца придётся предусмотреть отдельные ячейки, например, так:


Увы, всё это ничего не даст - вместо $A$1 мы просто вынуждены будем закрепить в формуле ДВССЫЛ($F$8) и всё равно потом перетаскивать столько же ссылок при копировании формулы. Кроме того, "вручную" введённые номера строки и столбца придётся ещё и проверять на допустимость (хотя бы как на рисунке), так что, не будем умножать сущностей.

Посмотреть метод в работе можно на двух первых листах приложенного файла Excel (2 разных примера).

На преобразовании Жордана-Гаусса основан и такой универсальный метод решения линейных задач оптимизации, как симплекс-метод . Описания его обычно страшны, длинны и перегружены теоремами. Попробуем сделать простое описание и разработать пригодный для расчёта в Excel алгоритм. На самом деле, симплекс-метод уже встроен в стандартную надстройку Пакет анализа, и программировать его "вручную" не нужно, так что наш код имеет, скорее, учебную ценность.

Сначала минимум теории.

Если вектор-столбцы СЛАУ линейно независимы, соответствующие им переменные являются базисными , а остальные – свободными . Например, в СЛАУ


переменные x 2 и x 4 - базисные, а x 1 и x 3 - свободные. Базисные переменные между собой независимы, а свободные можно сделать, например, нулями и получить { x 2 =2, x 4 =1 } – базисное решение системы.

Выбирая различные разрешающие элементы, можно получить решения СЛАУ с различными базисами. Любое неотрицательное базисное решение СЛАУ называется опорным .

Симплекс-метод обеспечивает переход от одного опорного решения к другому, пока не будет достигнуто оптимальное решение, дающее минимум целевой функции.

Алгоритм симплекс-метода состоит в следующем:

1. Задача ЛП преобразуется к каноническому виду:


Это всегда можно сделать следующим образом: к задаче, записанной в стандартной постановке


добавляются дополнительные балансовые переменные , число которых соответствует числу ограничений-неравенств m (ограничения на неотрицательность значений неизвестных не учитываются). После этого неравенства со знаком " ≤ " превращаются в равенства, например, система ограничений вида

2*x 1 +3*x 2 ≤20
3*x 1 +x 2 ≤15
4*x 1 ≤16
3*x 2 ≤12
x 1 ,x 2 ≥0

примет вид

2*x 1 +3*x 2 +x 3 =20
3*x 1 +x 2 +x 4 =15
4*x 1 +x 5 =16
3*x 2 +x 6 =12
x 1 ,x 2 ,...,x 6 ≥0

То есть, "экономический" смысл балансовых переменных очень прост – это "остатки" неиспользованных ресурсов каждого вида.

Если в исходной задаче искался не минимум, а максимум, целевая функция Z заменятся на Z 1 = -Z . Решения задач совпадают, при этом min Z = - max Z 1 . Например, цель

Z(x 1 ,x 2)=2*x 1 +5*x 2 (max)

переписывается в виде

Z 1 (x 1 ,x 2)=-2*x 1 -5*x 2 (min)

Если в исходной задаче были уравнения-неравенства со знаками " ≥ " вместо " ≤ ", обе части каждого такого неравенства умножаются на -1 , а знак неравенства меняется на противоположный, например,

3*x 1 +x 2 +x 4 ≥15

превращается в

3*x 1 -x 2 -x 4 ≤15

Канонический вид модели получен, для него выписывается симплекс-таблица :


В левом столбце записываются базисные переменные (БП), если они ещё не выделены – пусто.

2. С помощью шагов Жордана–Гаусса ищется первоначальный опорный план, т.е. СЛАУ приводится к базисному виду с неотрицательными свободными членами b i >0 . При этом целевая функция Z должна быть выражена только через свободные неизвестные (нулевые коэффициенты в Z-строке стоят только под переменными x i , которые есть в базисе). При выборе разрешающего элемента a r,s в строку r столбца БП выписываем переменную x s , если там уже была переменная – вычеркиваем её (выводим из базиса).

3. Выписываем под столбцами x i опорный план X * : под свободными переменными - нули, под базисными – соответствующие базисной переменной коэффициенты из столбца b .

Ниже выписываем вектор R по правилу: под базисными переменными – нули, под свободными R i =Z i .

Если все R i ≥0 , найдено оптимальное решение X * и значение цели Z min = -q , иначе нужен новый план, а у вас он есть, товарищ Жюков? (п. 4).

4. Для выбора разрешающего столбца s выбираем максимальную по модулю отрицательную компоненту вектора R , разрешающий столбец s выбран. Затем анализируем коэффициенты s-го столбца матрицы системы ограничений. Если все a i,s ≤0 , решения нет и Z min стремится к минус бесконечности, иначе переходим к п.5.

5. Для выбора разрешающей строки r составляем неотрицательные отношения b i /A i,s ≥0 , i=1,2,...,m , и выбираем среди них наименьшее. Если минимум достигается для нескольких строк, за разрешающую можно принять любую из них, при этом, в новом опорном плане значения некоторых базисных переменных станут равными 0, т.е., получаем вырожденный опорный план.

6. Выполняем преобразование Жордана-Гаусса с разрешающим элементом a r,s и переходим к п.3

Геометрически симплекс-методу соответствует кратчайший обход вершин n-мерного выпуклого многогранника, образующего область допустимых решений задачи:


Здесь мы перешли от опорного плана C , представляющего собой одну из вершин многомерного многоугольника, к оптимальному плану E=X * .

Запрограммировать это всё в Excel нелегко, но можно. В прилагаемом документе приведены 3 примера, реализующие решение задач симплекс-методом. Правда, при выполнени шага менять уже придётся 3 формулы, на листе первого примера на симплекс-метод они выделены жёлтым цветом: расчёт отношений для выбора разрешающей строки в ячейке I2 , заполнение столбца БП в ячейке A12 , шаг преобразования Жордана-Гаусса в ячейке B12 . Как и в примере на преобразование Жордана-Гаусса, изменение формул связано только с необходимостью сослаться на новую строку, содержащую адрес ячейки с разрешающим элементом (для первого шага - ячейка C9).

4. Метод Жордана - Гаусса.

Схема с выбором главного элемента состоит в том, что требование неравенства нулю диагональных элементов akk, на которые происходит деление в процессе исключения, заменятся более жестким: из всех элементов К-го столба выбрать наибольший по модулю и переставить уравнения так, чтобы этот элемент оказался на месте элемента акк. Выбор главного элемента и связанная с ним перестановка строк необходимы в тех случаях, когда на каком-либо i-ом шаге акк=0 либо же акк очень мало по остальными элементами i- го столбца: при делении на такое «малое» акк будут получаться большие числа с большими абсолютными погрешностями, в результате чего решение может сильно исказиться.

Ниже излагается алгоритм полного исключения неизвестных или метод Жордана – Гаусса. Суть метода состоит в том, что, рассмотрев первое уравнение, в нем неизвестное с коеффициэнтом, отличным от нуля (в дальнейшем разрешающий элемент), и разделив первое уравнение на этот коэффициент, с помощью первого уравнения исключают это неизвестное из всех уравнений, кроме первого. Выбрав во втором уравнении неизвестное с коэффициентом, отличным от нуля, и разделив на него второе уравнение, с помощью второго исключают другие неизвестные из всех уравнений, кроме второго и т.д., т.е. с помощью одного уравнения производят полное исключение одного неизвестного. Процесс продолжается до тех пор, пока не будут использованы все уравнения.

Как известно, системы линейных алгебраических уравнений могут имеет одно решение, множество решений или системы несовместны. При элементарных преобразованиях элементов матрицы системы эти случаи выявляются в следующем:

1. В процессе исключений левая часть I –го уравнения системы обращается в нуль, а правая часть равна некоторому числу, отличному от нуля. т.е. 02+=bc0.

Это означает, что система не имеет решений, так как I – му уравнению не могут удовлетворять никакие значения неизвестных;

2. Левая и правая части I – го уравнения обращаются в нуль. Это означает, что I – ое уравнение является линейной комбинацией остальных, ему удовлетворяет любое найденное решение системы, поэтому оно может быть отброшено. В системе количество неизвестных больше количества уравнений и, следовательно, такая система имеет множество решений;

3. После того как все уравнения использованы для исключения неизвестных получено решение системы.

Таким образом, конечной целью преобразований Жордана-Гаусса является получение из заданной линейной системы

a11x1 + a12x2 + … + a1nxn = b1,n+1

a21x1 + a22x2 + … + a2nxn = b2,n+1

am1x1 + am2x2 + … + amnxn = bm.n+1

Здесь x1, x2, …, xn - неизвестные, которые надо определить. a11, a12, …, amn - коэффициенты системы - и b1, b2, … bm - свободные члены - предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе - неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) - совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Решим следующую систему уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

· К строке 2 добавим: -4 * Строку 1.

· К строке 3 добавим: -9 * Строку 1.

· К строке 3 добавим: -3 * Строку 2.

· Строку 2 делим на -2

· К строке 1 добавим: -1 * Строку 3.

· К строке 2 добавим: -3/2 * Строку 3.

· К строке 1 добавим: -1 * Строку 2.

В правом столбце получаем решение:

.

В методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики...

Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с...



Математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1. Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2. Проведение разработанного факультативного курса. 3. Проведение диагностирующей контрольной...

... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных...

Березнёва Т. Д.

Тема 7

«СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

МЕТОД ГАУССА – ЖОРДАНА.»

(Учебная дисциплина “Введение в линейную алгебру и аналитическую геометрию”)

СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

МЕТОД ГАУССА – ЖОРДАНА.

Основные понятия

Уравнение с n переменными называется линейным , если все переменные (x 1 , x 2 , … x n ) входят в него в степени 1. Общий вид такого уравнения формально записывается следующим образом:

a 1 x 1 + a 2 x 2 + … a j x j + … a n x n = b , (*)


=
b .

Величины a j , j = 1,…, n , и b являются известными (заданными). Величиныa j называются коэффициентами при переменных (при неизвестных), а b - свободным членом .

Решением линейного уравнения (*) ,,…,) значений переменных, который при подстановке в уравнение (т.е. при заменеx j на при всехj от 1до n обращает его в тождество. Подчеркнем, что решение уравнения с n переменными всегда есть набор из n чисел и каждый такой набор из n чисел представляет собой одно решение. Очевидно, что если хотя бы один коэффициент при переменных не равен 0, то уравнение (*) имеет решение. В противном случае решение существует только при b = 0, и это все произвольные наборы из n чисел.

Рассмотрим одновременно m уравнений вида (*), т.е. систему m линейных алгебраических уравнений с n переменными . Пусть каждое i - е уравнение, i = 1,2,…,m, задается коэффициентами при переменных a i 1 , a i 2 , …, a in и свободным членом b i , т.е. имеет вид

a i1 x 1 + a i2 x 2 + … + a ij x j + … + a in x n = b i .

Тогда в общем виде система m линейных алгебраических уравнений с n переменными может быть записана в виде:

a 11 x 1 + a 12 x 2 + … + a 1j x j + … + a 1n x n = b 1

a 21 x 1 + a 22 x 2 + … + a 2j x j + … + a 2n x n = b 2

………………………………………………………………………………

a i1 x 1 + a i2 x 2 + … + a ij x j + … + a in x n = b i (1)

…………………………………………………

a m1 x 1 + a m2 x 2 + … + a mj x j + … + a mn x n = b m

или, что то же самое,


=
b i , i = 1,…, m .

Если все свободные члены равны нулю, то система (1) называется однородной , т.е. имеет вид


= 0,
i = 1,…, m, (1 0 )

в противном случае - неоднородной . Система (1 0 ) является частным случает общей системы (1) .

Решением системы уравнений (1) называется упорядоченный набор (,,…,) значений пере­менных, который при подстановке в урав­нения системы (1) (т.е. при заменеx j на , j = 1,…,n) все эти уравнения обращает в тождества, т.е.
=b i при всех i = 1,…,m.

Система уравнений (1) называется совместной, если у нее существует хотя бы одно решение. В противном случае система называется несовместной .

Совокупность всех решений системы уравнений (1) мы будем называть множеством ее решений и обозначать X b (X 0 , если система однородная). Если система несовместна, то X b = .

Основная задача теории систем линейных алгебраических уравнений состоит в том, чтобы выяснить, совместна ли система (1), и, если совместна, то описать множество всех её решений. Существуют методы анализа таких систем, которые позволяют описывать множество всех решений в случае совместных систем или убеждаться в несовместности в противном случае. Одним из таких универсальных методов является метод последовательного полного исключения неизвестных, или метод Гаусса - Жордана , который мы будем подробно изучать.

Прежде, чем переходить к описанию метода Гаусса - Жордана, приведем ряд полезных для дальнейшего определений и утверждений.

Две системы уравнений называются эквивалентными , если они имеют одно и то же множество решений. Другими словами, каждое решение одной системы является решением другой, и наоборот. Все несовместные системы считаются эквивалентными между собой.

Из определений эквивалентности и множества решений систем вида (1) сразу же вытекает справедливость следующих утверждений, которые мы сформулируем в виде теоремы.

Теорема 1. Если в системе (1) имеется уравнение с номером k , 1k m , такое, что a kj = 0 j , то

Справедливость утверждений теоремы становится очевидной, если заметить, что k – е уравнение имеет вид

0 x 1 + 0 x 2 + … + 0 x j + … + 0 x n = b k .

Теорема 2. Если к одному уравнению системы (1) прибавить другое уравнение этой же системы, умноженное на любое число, то получится система уравнений, эквивалентная исходной системе.

Доказательство. Умножим, например, второе уравнение системы (1) на некоторое число и прибавим его к первому уравнению. В результате этого преобразования получим систему (1’), в которой все уравнения, начиная со второго, не изменились, а первое имеет следующий вид

= b 1 + b 2 .

Очевидно, если какой-нибудь набор (,,…,) значений переменных обращает в тождества все уравнения системы (1), то он обращает в тождества и все уравнения системы (1’). Наоборот, решение (x’ 1 ,x’ 2 ,…,x’ j , … ,x’ n) системы (1’) является также решением системы (1), так как система (1) получается из системы (1’) с помощью аналогичного преобразования, когда к первому уравнению системы (1’) прибавляется второе уравнение системы (1’), умноженное на число (-).

Точно также доказывается и следующее утверждение.

Теорема 2’ . Умножение произвольного уравнения системы (1) на любое число, отличное от нуля, переводит систему (1) в эквивалентную ей систему уравнений .

Теоремы 2 и 2’ дают два вида преобразований, которым подвергалась система (1), оставаясь эквивалентной:

а) умножение (или деление) произвольного уравнения системы (1) на любое число, отличное от нуля;

б) прибавление (или вычитание) к одному уравнению другого, умноженного на некоторое число.

Такие преобразования а) и б) называются элементарными преобразованиями системы уравнений (1).

Если к системе уравнений (1) несколько раз применить элементарные преобразования, то полученная в результате система, очевидно, также будет эквивалентна первоначальной.

Систему уравнений (1) можно записать в табличной форме:


Прямоугольная таблица чисел, составленная из коэффициентов a ij при неизвестных системы (1), называется матрицей системы (1) и обозначается A (в ней m строк и n столбцов), столбец свободных членов обозначается b. Прямоугольная таблица, составленная из коэффициентов a ij при неизвестных и из столбца свободных членов b системы (1), называется расширенной матрицей системы (1) и обозначается (в нейm строк и (n+1) столбцов), т.е = (A, b). В i – ой строке матрицы содержатся всеизвестные параметры, характеризующие i - ое уравнение системы (1), i = 1,…, m. В j – м столбце матрицы A содержатся все коэффициенты при неизвестном x j , встречающиеся в системе (1).

Числа a ij называются элементами матрицы А. Элемент a ij находится в i - ой строкеи в j - м столбце матрицы А. Принято говорить, что элементa ij находится на пересечении i - ой строки и j - го столбца матрицы А. Если все элементы строки (столбца) матрицы А (кроме одного) равны нулю, а ненулевой элемент равен единице, то такая строка (столбец) называется единичной (единич­ным).

Элементарным преобразованиям системы (1) соответствуют следующие элементарные преобразования таблицы (2):

а) умножение (или деление) всех элементов произвольной строки таблицы (2) на любое число, отличное от нуля ,

б) прибавление (или вычитание) к одной строке (поэлементно) другой строки, умноженной на некоторое число.

В результате любого элементарного преобразования получается новая таблица , в которой вместо той строки, к которой прибавляли (или умножали на любое число, отличное от нуля), пишется новая строка , а осталь­ные строки (в том числе и та, которую прибавляли) пишутся без из­менения . Новая таблица соответствует системе уравнений, эквивалентной исходной системе .

Применяя элементарные преобразования можно таблицу (2) и соответственно систему (1) упростить так, что решить исходную систему становится просто. На этом и основан предлагаемый метод.

Метод последовательного полного исключения неизвестных

(Метод Гаусса - Жордана)

Метод последовательного полного исключения неизвестных, или метод Гаусса – Жордана , является универсальным методом анализа любых (заранее неизвестно, каких - совместных или несовместных) систем линейных алгебраических уравнений. Он позволяет решать совместные системы или убеждаться в несовместности несовместных систем.

Отметим принципиальное отличие предлагаемого метода решения систем линейных алгебраических уравнений от метода решения, ска­жем, стандартного квадратного уравнения. Оно решается с помощью хорошо известных формул, в которых неизвестные выражаются через коэффициенты уравнения. В случае общих систем линейных алгебраических уравнений мы таких формул не имеем и используем для отыскания решения метод итераций , или итеративный метод , или итерационный метод . Такие методы задают не формулы, а последовательность действий.

Метод Гаусса - Жордана представляет собой последовательную реализацию ряда однотипных больших шагов (или итераций ). Это конкретный итерационный метод - один из многих методов итераций, предложенных для решения систем линейных алгебраических уравнений вида (1). Он состоит из начального этапа, основного этапа и заключительного этапа . Основной этап содержит повторяющиеся итерации – наборы однотипных действий.

Пусть задана конкретная система линейных алгебраических уравнений (1). Это значит, что известны n , m , a ij , b i , i = 1,…, m ; j = 1,…, n . Опишем предлагаемый метод решения этой системы.

Начальный этап включает в себя построение таблицы I (0) вида (2) и выбор в ней ведущего элемента – любого ненулевого коэффициента при переменных из таблицы (2). Столбец и строка, на пересечении которых стоит ведущий элемент, называются ведущими . (Пусть выбран элемент a i 0 j 0 . Тогда i 0 – ая строка ведущая, j 0 - й столбец ведущий.) Переходим к основному этапу. Заметим, что часто ведущий элемент называют разрешающим .

Основной этап состоит из повторяющихся однотипных итераций с номерами k = 1, 2,…. Опишем подробно итерации метода Гаусса - Жордана.

К началу каждой итерации известна некоторая таблица I вида (2), в ней выбран ведущий (разрешающий) элемент и, соответственно, ведущий столбец и ведущая строка. Кроме того, имеется информация о том, какие строки и столбцы уже были ведущими. (Так, например, после начального этапа, т.е. на итерации 1 известны I (0) , ведущий (разрешающий) элемент a i 0 j 0 и i 0 – ая строка ведущая, j 0 - ой столбец ведущий.)

Итерация(с номером k ) состоит из следующих действий.

    Преобразование ведущего столбца (т.е. столбца, содержащего ведущий элемент) в единичный с 1 на месте ведущего элемента путем последовательного поэлементного вычитания ведущей строки (т.е. строки, содержащей ведущий элемент), умноженной на некоторые числа, из остальных строк таблицы. Сама ведущая строка преобразуется путем поэлементного деления ее на ведущий элемент.

    Выписы­вается новая таблица I (k) , (k - номер итерации), в которой все столбцы, которые были когда-либо ведущими, – единичные .

    Проверяется, можно ли в таблице I (k) выбрать новый ведущий (разрешающий) элемент . По определению это любой ненулевой элемент, который стоит на пересечении строки и столбца, которые еще не были ведущими .

Если такой выбор возможен, то столбец и строка, на пересечении которых стоит ведущий (разрешающий) элемент, называются ведущими . Затем итерация повторяется с новой таблицей I (k) , т.е. действия 1 – 3 повторяются с новой таблицей I (k) . При этом строится новая таблица I (k +1) .

Если нельзя выбрать новый ведущий элемент, то переходим к заключительному этапу.

Заключительный этап. Пусть проделано r итераций, получена таблица I (r) , состоящая из матрицы коэффициентов при переменных A (r) и столбца свободных членов b (r) , и в ней нельзя выбрать новый ведущий элемент, т.е. метод остановился . Заметим, что метод обязательн о остановится за конечное число шагов , т.к. r не может быть больше min{m,n}.

Каковы варианты остановки метода? Что значит «нельзя выбрать новый ведущий элемент»? Это значит, что после r – ой итерации в матрице A (r) новой системы, эквивалентной системе (1), либо

а) все строки A (r) были ведущими, т.е. в каждой строке стоит одна и ровно одна единица, которая не стоит больше не в какой другой строке,

б) остались строки в A (r) , состоящие только из нулей.

Рассмотрим эти варианты.

а) В этом случае r = m, m n. Переставив строки и перенумеровав переменные (т.е. переставив столбцы), можно таблицу I (r) представить в виде

Подчеркнем, что в таблице (3) каждая переменная с номером i, не превосходящим r, встречается только в одной строке. Таблица (3) соответствует системе линейных уравнений вида

x 1 +
=b (r) 1 ,

x 2 +
=b (r) 2 ,

………………………, (4)

x r +
=b (r) r ,

в которой каждая переменная с номером i, не превосходящим r , однозначно выражается через переменные x r +1 , … ,x n , коэффициенты матрицы a (r) ij , j = r+1,…,n, и свободный член b (r) i , представленные в таблице (3). На переменные x r +1 , … , x n не накладываются никакие ограничения , т.е. они могут принимать любые значения . Отсюда произвольное решение системы, описываемой таблицей (3), или, что то же самое, произвольное решение системы (4), или, что то же самое, произвольное решение системы (1) имеет вид

x i = b (r) i - a (r) ij x j , i = 1,…,r = m; x j – любое при j = (r+1),…,n. (5)

Тогда множество решений системы (1) можно записать как

X b = {x=(x 1 , … ,x n) : x i = b (r) i - a (r) ij x j при i = 1,…, r = m; x j – любое при j =(r+1),…,n.}.

б) В этом случае r < m, и существует хотя бы одна строка k, k > r, (предполагаем, что сделана перестановка строк и столбцов такая же, как в пункте а)) такая, что a (r) kj = 0 при всех j. Тогда, если соответствующий свободный член b (r) k не равен 0, то k - е уравнение не имеет решения, и, следовательно, вся система не имеет решения, т.е. система (1) несовместна .

Если же соответствующий b (r) k равен 0, то k - ое уравнение является лишним и его можно отбросить. Отбросив все такие уравнения, получим, что система (1) эквивалентна системе изr уравнений с n переменными, которая через r шагов записывается с помощью таблицы вида (3), в которой все строки были ведущими. Таким образом, мы пришли к рассмотренному выше случаю а) и можем выписать решение вида (5).

Метод Гаусса – Жордана описан полностью. За конечное число итераций система линейных алгебраических уравнений будет решена (если она совместна) или будет очевидно, что она несовместна (если она действительно несовместна).

Переменные, соответствующие ведущим (разрешающим) элементам , или стоящие в ведущих столбцах, принято называть базисными , а ос­тальные переменные -свобод­ными .

Обратим внимание на следующее.

1) Когдамы начинаем решать систему методом Гаусса - Жордана, мы можем не знать, совместна эта система или нет. Метод Гаусса - Жордана за конечное число итераций r даст ответ на этот вопрос. В случае совместной системы на основании последней таблицы выписывается общее решение исход­ной системы. В этом случае число базисных переменных обязательно равно номеру r последней итерации, т.е. числу выполненных итераций. Число r всегда не превосходит min{m,n},гдеm - число уравнений системы,а n - число переменных системы. Если r < n, то (n r) равно числу свободных переменных.

2) При записи общего решения не нужно перенумеровывать переменные, как это делалось для простоты понимания при описании Заключительного этапа. Это сделано для более ясного понимания.

3) При решении системы (1) методом Гаусса - Жордана базисными переменными будут только переменные, соответствующие столбцам, которые на каких-то итерациях выступали в роли ведущих , и наоборот, если на какой-то итерации столбец выступал в качестве ведущего, соответствующая ему переменная обязательно будет в числе базисных.

4) Если общее решение системы (1) содержит хотя бы одну свободную переменную, то эта система имеет бесконечно много част­ных решений, если же свободных переменных нет, то система имеет единственное решение, которое совпадает с общим решением.

5) Ведущие элементы могут быть выбраны на каждой итерации различным способом. Важно только то, что это ненулевые коэффициенты, стоящие на пересечении строки и столбца, которые до этого не были ведущими. Различный выбор ведущих элементов может дать различные записи множества решений. Однако, само множество решений при любой записи одно и то же.

Поясним работу метода на примерах.

Пример I. Решить следующую систему линейных алгебраических уравнений

2 x 1 – 3 x 2 + 3 x 3 + 5 x 4 = -1,

3 x 1 + 4 x 2 - 2 x 3 + 6 x 4 = 2, (6)

5 x 1 – 4 x 2 + 6 x 3 + 10 x 4 = 2

методом последовательного полного исключения неизвестных (методом Гаусса - Жордана).

Начальный этап. Сначала выпишем систему уравнений (6) в более удобной форме - в виде таблицы I (0) .



Загрузка...