sonyps4.ru

Конденсатор в цепи переменного тока – что нужно накапливать и для чего.

Подключен к резистору, то ток и напряжение в цепи в любой точке временной диаграммы будут пропорциональны друг другу. Это означает, что кривые тока и напряжения будут достигать "пикового" значения одновременно. При этом мы говорим, что ток и напряжение находятся в фазе.

Рассмотрим теперь, как будет себя вести конденсатор в цепи переменного тока.

Если к источнику переменного напряжения подключен конденсатор, максимальное значение напряжения на нем будет пропорционально максимальному значению тока, протекающего в цепи. Однако пик волны синусоиды напряжения не будет наступать в то же самое время, что и максимум тока.

В этом примере мгновенное значение тока достигает своего максимального значения на четверть периода (90 эл.град.) раньше, чем это сделает напряжение. В таком случае говорят, что «ток опережает напряжение на 90◦».

В отличие от от ситуации в цепи постояннго тока, значение V/I здесь не является постоянным. Тем не менее, отношение V является весьма полезной величиной и в электротехнике называется емкостным сопротивлением (Хс) компонента. Поскольку эта величина по-прежнему отображает отношение напряжения к току, т.е. в физическом смысле является сопротивлением, ее единицей измерения является Ом. Значение Хс конденсатора зависит от его емкости (С) и частоты переменного тока (f).

Так как на конденсатор в цепи переменного тока подается среднеквадратичное значение напряжения, в этой цепи протекает такой же переменный ток, который ограничивается конденсатором. Это ограничение обусловлено конденсатора.

Поэтому значение тока в цепи, не содержащей никаких других компонентов, кроме конденсатора, определяется альтернативной версией Закона Ома

I RMS = U RMS / X C

Где U RMS - среднеквадратическое (действующее) значение напряжения. Обратите внимание, что X с заменяет величину R в версии закона Ома для

Теперь мы видим, что конденсатор в цепи переменного тока ведет себя совсем не так, как постоянный резистор, и ситуация здесь, соответственно, обстоит сложнее. Для того чтобы лучше понять процессы, происходящие в такой цепи, полезно ввести такое понятие, как вектор.

Основная идея вектора - это представление о том, что комплексное значение изменяющегося во времени сигнала может быть представлено ​​как произведение (которое не зависит от времени) и некоего комплексного сигнала, являющегося функцией времени.

Например, мы можем представить функцию A cos(2πνt + θ) просто как сложную постоянную A∙e jΘ .

Так как векторы представлены величиной (или модулем) и углом, то графически они представляются стрелкой (или вектором), вращающейся в плоскости XY.

С учетом того, что напряжение на конденсаторе «запаздывает» по отношению к току, представляющие их векторы расположены в комплексной плоскости так, как показано на рисунке выше. На этом рисунке векторы тока и напряжения вращаются в направлении, противоположном движению часовой стрелки.

В нашем примере ток на конденсаторе обусловлен его периодическим перезарядом. Поскольку конденсатор в цепи переменного тока обладает способностью периодически накапливать и сбрасывать электрический заряд, между ним и источником питания происходит постоянный обмен энергией, которая в электротехнике называется реактивной.

КОНДЕНСАТОР - означает накопитель. В радио и электронной аппаратуре конденсатор является накопителем электрических зарядов. Простейший конденсатор состоит из двух металлических пластинок разделенных слоем диэлектрика. Диэлектрик - это материал который не проводит электрического тока и обладает определенными свойствами о которых поговорим чуть позже.

Так как конденсатор является накопителем, то он должен обладать определенной емкостью (объемом для накопления зарядов). На емкость конденсатора влияют площадь пластин (еще их называют "обкладками"), расстояние между обкладками и качество диэлектрика. К хорошим диэлектрикам относятся вакуум, эбонит, фарфор, слюда, полиэтилен, текстолит и много других синтетических материалов.
На рисунке изображен простейший конденсатор с двумя параллельными обкладками площадью S (S = m * n), которые находятся в вакууме на расстоянии d друг от друга.


Если между верхней и нижней обкладками конденсатора приложить напряжение Uab, то на верхней и нижней обкладках конденсатора накопятся одинаковые положительный +q и отрицательный -q заряды, которые называют свободными. Между обкладками возникает электрическое поле обозначенное на рисунке буквой Е.
Емкость нашего конденсатора (обозначается буквой С) будет: С = Eo*S/d, где Ео - электрическая постоянная (для вакуума) Ео=8,854 * 10 -12 Ф/м (Фарад на метр).
Если между обкладками поместить диэлектрик,


то ёмкость конденсатора будет: С = Er * Eo *S / d. В формуле расчета ёмкости добавилась величина Er - относительная диэлектрическая проницаемость введённого диэлектрика.
Из формулы следует, что емкость конденсатора увеличивается на величину Er проницаемости диэлектрика. Итак, чем больше площадь S пластин конденсатора, больше значение Er и меньше расстояние d между пластинами, тем больше емкость конденсатора. Основной единицей емкости в системе единиц СИ является фарад (Ф). Емкость 1Ф очень велика. В электротехнике обычно используют дольные единицы емкости:
микрофарада (мкФ), 1мкФ = 1*10 -6 Ф,
нанофарада (нФ), 1нФ = 1*10 -9 Ф, и
пикофарада (пФ), 1пФ = 1*10 -12 Ф.



При выборе диэлектрика для конденсаторов, кроме относительной диэлектрической проницаемости диэлектрика, учитывают еще два важных параметра:
1) Электрическую прочность - прочность диэлектрика при подаче на прокладки конденсатора высокого напряжения. При низкой электрической прочности может произойти электрический пробой, и диэлектрик станет проводником электрического тока;
2) Удельное объемное сопротивление - электрическое сопротивление диэлектрика постоянному току. Чем больше удельное сопротивление диэлектрика, тем меньше утечка накопленных зарядов в конденсаторе.

КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО ТОКА. На графике накопление заряда конденсатором выглядит как показано на рисунке 1.

Время заряда конденсатора зависит от ёмкости конденсатора (при одинаковом приложенном напряжении). Чем больше ёмкость конденсатора, тем больше время заряда. Аналогичная картина (Рис. 2) наблюдается при разрядке конденсатора на сопротивление. При одинаковом сопротивлении время разряда больше у конденсатора с большей ёмкостью.

КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА. Если напряжение приложенное к емкостному элементу, будет изменяться по амплитуде (переменное напряжение),то будет изменяться и заряд конденсатора, то есть в емкостном элементе появится ток.


Ток Ic проходящий через конденсатор зависит от частоты f приложенного переменного напряжения и ёмкости С конденсатора. Если для постоянного тока сопротивление конденсатора можно считать равным бесконечности, то для переменного тока конденсатор обладает определённым сопротивлением. Сопротивление конденсатора переменному току Rc рассчитывается по формуле показанной на рисунке.
В формуле расчета емкостного сопротивления переменному току частота выражается в герцах, а емкость конденсатора в фарадах. Из формулы видно, что с увеличением частоты f при неизменной емкости конденсатора сопротивление Rc снижается, аналогично с увеличением емкости конденсатора при неизменной частоте сопротивление Rc так же снижается. Конденсаторы, так же как и резисторы, для получения заданной емкости Со можно включать параллельно и последовательно. Формулы расчета результирующей емкости показаны на рисунке.


КОНСТРУКЦИЯ, ПАРАМЕТРЫ И ТИПЫ КОНДЕНСАТОРОВ. Предположим, что мы конструируем конденсатор и попробуем, уже обладая определенными знаниями, рассчитать емкость конденсатора. Как известно, емкость конденсатора зависит от площади обкладок S, расстояния между обкладками d и диэлектрической проницаемости применяемого диэлектрика Er. Обкладки конденсатора изготавливаются из металлов с хорошей электрической проводимостью - алюминий, медь, серебро, золото. Емкость конденсатора не зависит от толщины обкладок, поэтому чем тоньше обкладки конденсатора, тем лучше - экономим металл и уменьшаем геометрический объём конденсатора.


Расстояние d не должно быть слишком малым, во избежание электрического пробоя диэлектрика.
Выберем в качестве диэлектрика наиболее распространенный материал - гетинакс с Er равной 6 ... 8. Примем Er для нашего конденсатора равной 7.


Площадь S вычисляется для одной обкладки конденсатора при условии, что линейные размеры обкладок одинаковы. Если одна из обкладок имеет меньшие длину или ширину то площадь вычисляется для меньшей обкладки.
Все размеры - длина и ширина обкладок и расстояние между ними должны быть выражены в метрах. Примем размеры такие, какие показаны на рисунке. Подставим в формулу расчета емкости конденсатора наши данные: C = Er * Eo * S / d;
C = 7 * 8.854*10 -12 * 0.0025 / 0.001= 0.000000000155Ф (фарады).
Возведем полученный результат в 12 степень чтобы получить значение емкости в пикофарадах:
C = 0.000000000155 12 = 155пФ.
Полученная нами ёмкость конденсатора 155пф очень мала, обычно такие ёмкости используются в аппаратуре работающей на высоких частотах переменного тока порядка 1 - 600 МГц (мегагерц).
Представьте себе, что мы разрабатываем миниатюрный карманный радиоприемник в котором требуется порядка 30 таких конденсаторов.

Если мы установим в схему 30 разработанных нами конденсаторов, не считая других необходимых радиодеталей, то наш радиоприемник никак не получится миниатюрным. Все дело в том, что объём только наших конденсаторов получится таким, что его никак нельзя будет назвать приемлемым.
Объем одного конденсатора Vc равен Vc = 5см * 5см * 0,1см
Vc = 2,5см в кубе. Тогда объем 30 конденсаторов будет равен:
V = 30 * 2,5 = 75см в кубе.
Что делать, как быть, как уменьшить геометрический объем конденсатора для применения в миниатюрной радиоаппаратуре? Для решения этой проблемы максимально уменьшают расстояние между обкладками, тогда увеличивается емкость и уменьшается геометрический объем конденсатора. Но расстояние уменьшают до определенных пределов иначе конденсатор будет пробиваться даже при низком напряжении подаваемом на конденсатор. В связи с этим на каждом конденсаторе указывается напряжение которое он может выдержать.

Для уменьшения площади обкладок конденсатор делают многослойным состоящим как бы из нескольких параллельно включенных конденсаторов (вспомните формулу параллельного включения конденсаторов).
В качестве диэлектрика в миниатюрных конденсаторах используют тонкие пленки из синтетических материалов, а в качестве обкладок металлическую фольгу, чаще всего из алюминия.


На корпусе конденсатора, обычно, указывается его тип, емкость и рабочее напряжение. Остальные параметры конденсатора определяются из справочников. Емкость конденсатора указывается не так, как на электрических схемах. Например емкость 2,2пФ обозначается 2П2, емкость 1500 пФ - 1Н5, емкость 0,1 мкФ - М1, емкость 2,2 мкФ - 2М2, емкость 10 мкФ - 10М.
У обычных конденсаторов КМ, КД, МБМ и так далее трудно получить большую ёмкость при малых габаритах поэтому были разработаны так называемые электролитические конденсаторы у которых в качестве диэлектрика используется специальная электролитическая жидкость с очень большим Er. Ёмкость таких конденсаторов может достигать сотен тысяч микрофарад. К недостатку таких конденсаторов следует отнести низкое рабочее напряжение (до 500V) и обязательное соблюдение полярности при включении в схему.
Для настройки и подстройки некоторых типов радиоаппаратуры, например радиоприемник или телевизор, применяют специальные конденсаторы с изменяемой ёмкостью.

В зависимости от назначения такие конденсаторы называют "подстроечные" и "конденсаторы переменной емкости".
Емкость переменных и подстроечных конденсаторов изменяется механическим способом, путем изменения расстояния между обкладками или изменения площади пластин. В качестве диэлектрика в таких конденсаторах используется воздух или фарфор.
В заключение следует отметить, что в настоящее время, в связи с бурным развитием радиоэлектроники подстроечные и переменные конденсаторы практически не применяются. Их с успехом заменяют специальные фильтры и полупроводниковые приборы которые не требуют механического изменения параметров.

Что такое переменный ток

Если рассматривать постоянный ток, то он не всегда может быть идеально постоянным: напряжение на выходе источника может зависеть от нагрузки или от степени разряда аккумулятора или гальванической батареи. Даже при постоянном стабилизированном напряжении ток во внешней цепи зависит от нагрузки, что и подтверждает закон Ома. Получается, что это тоже не совсем постоянный ток, но переменным такой ток назвать тоже нельзя, поскольку направления он не меняет.

Переменным обычно называют напряжение или ток, направление и величина которого меняются не под действием внешних факторов, например нагрузки, а вполне «самостоятельно»: именно таким его вырабатывает генератор. К тому же, эти изменения должны быть периодическими, т.е. повторяющимися через определенный промежуток времени, называемый периодом.

Если же напряжение или ток меняется как попало, не заботясь о периодичности и иной закономерности, такой сигнал называется шумом. Классический пример - «снег» на экране телевизора при слабом эфирном сигнале. Примеры некоторых периодических электрических сигналов показаны на рисунке 1.

Для постоянного тока имеется всего две характеристики: это полярность и напряжение источника. В случае с переменным током этих двух величин явно недостаточно, поэтому появляются еще несколько параметров: амплитуда, частота, период, фаза, .

Рисунок 1.

Наиболее часто в технике приходится сталкиваться с колебаниями синусоидальной формы, причем, не только в электротехнике. Представьте себе автомобильное колесо. При равномерном движении по хорошей ровной дороге центр колеса описывает прямую, параллельную дорожному покрытию. В то же время, любая точка на периферии колеса перемещается по синусоиде относительно только что упомянутой прямой.

Сказанное может подтвердить рисунок 2, на котором показан графический метод построения синусоиды: кто хорошо учил черчение, тот прекрасно представляет, как выполняются подобные построения.

Рисунок 2.

Из школьного курса физики известно, что синусоида является наиболее распространенной и пригодной для изучения периодической кривой. В точности также синусоидальные колебания получаются в , что обусловлено их механическим устройством.

На рисунке 3 показан график синусоидального тока.

Рисунок 3.

Нетрудно заметить, что величина тока изменяется по времени, поэтому ось ординат обозначена на рисунке как i(t), - функция тока от времени. Полный период тока обозначен сплошной линией и имеет период T. Если начать рассмотрение от начала координат, то видно, что сначала ток увеличивается, доходит до Imax, переходит через нуль, уменьшается до -Imax, после чего увеличивается и доходит до нуля. Далее начинается следующий период, что показано пунктирной линией.

В виде математической формулы поведение тока записывается так: i(t)= Imax*sin(ω*t±φ).

Здесь i(t) - мгновенное значение тока, зависящее от времени, Imax -амплитудное значение (максимальное отклонение от состояния равновесия), ω - круговая частота (2*π*f), φ - фазовый угол.

Круговая частота ω измеряется в радианах в секунду, фазовый угол φ - в радианах или градусах. Последний имеет смысл лишь в том случае, когда имеется два синусоидальных тока. Например, в цепях с ток опережает напряжение на 90˚ или ровно на четверть периода, что и показано на рисунке 4. Если синусоидальный ток один, то можно двигать его по оси ординат как угодно, и от этого ничего не изменится.

Рисунок 4. В цепях с конденсатором ток опережает напряжение на четверть периода

Физический смысл круговой частоты ω в том, какой угол в радианах «пробежит» синусоида за одну секунду.

Период - T время, за которое синусоида совершит одно полное колебание. То же относится и к колебаниям другой формы, например, прямоугольным или треугольным. Период измеряется в секундах или более мелких единицах: миллисекундах, микросекундах или наносекундах.

Еще один параметр любого периодического сигнала, в том числе и синусоиды это частота, сколько колебаний проделает сигнал за 1 секунду. Единицей измерения частоты является герц (Гц), названный по имени ученого XIX века Генриха Герца. Итак, частота 1Гц это есть ни что иное, как одно колебание/секунду. Например, частота осветительной сети 50Гц, то есть за секунду проходит ровно 50 периодов синусоиды.

Если известен период тока (можно ), то частоту сигнала поможет узнать формула: f=1/T. При этом, если время выражено в секундах, то результат получится в Герцах. И наоборот, T=1/f, частота в Гц, время получается в секундах. Например, при период получится 1/50=0,02сек, или 20 миллисекунд. В электричестве чаще применяются более высокие частоты: КГц - килогерцы, МГц - мегагерцы (тысячи и миллионы колебаний в секунду) и т.д.

Все сказанное для тока справедливо и для переменного напряжения: достаточно на рис 6 просто поменять букву I на U. Формула будет выглядеть вот так: u(t)=Umax*sin(ω*t±φ).

Этих разъяснений вполне достаточно для того, чтобы вернуться к опытам с конденсаторами и объяснить их физический смысл.

Конденсатор проводит переменный ток, что было показано в схеме на рисунке 3 (см. статью - ). Яркость свечения лампы увеличивается при подключении дополнительного конденсатора. При параллельном включении конденсаторов их емкости просто складываются, поэтому можно предположить, что емкостное сопротивление Xc зависит от емкости. Кроме того оно зависит еще от частоты тока, и поэтому формула выглядит так: Xc=1/2*π*f*C.

Из формулы следует, что с увеличением емкости конденсатора и частоты переменного напряжения реактивное сопротивление Xc уменьшается . Эти зависимости показаны на рисунке 5.

Рисунок 5. Зависимость реактивного сопротивления конденсатора от емкости

Если подставить в формулу частоту в Герцах, а емкость в Фарадах, то результат получится в Омах.

Будет ли греться конденсатор?

Теперь вспомним опыт с конденсатором и электросчетчиком, почему он не крутится? Дело в том, что счетчик считает активную энергию, когда потребителем является чисто активная нагрузка, например, лампы накаливания, электрочайник или электроплита. У таких потребителей напряжение и ток совпадают по фазе, имеют один знак: если перемножить два отрицательных числа (напряжение и ток во время отрицательного полупериода) результат по законам математики все равно положительный. Поэтому мощность таких потребителей всегда положительна, т.е. уходит в нагрузку и выделяется в виде тепла, как показано на рисунке 6 пунктирной линией.

Рисунок 6.

В случае, когда в цепь переменного тока включен конденсатор ток и напряжение по фазе не совпадают: ток опережает по фазе напряжение на 90˚, что приводит к тому, что получается сочетание, когда ток и напряжение имеют разные знаки.

Рисунок 7.

В эти моменты мощность получается отрицательной. Другими словами, когда мощность положительная, конденсатор заряжается, а когда отрицательная - запасенная энергия отдается обратно в источник. Поэтому в среднем получается по нулям и считать тут просто нечего.

Конденсатор, если конечно он исправный, не будет даже нисколько нагреваться. Поэтому, часто конденсатор называют безваттным сопротивлением , что позволяет применять его в бестрансформаторных маломощных блоках питания. Хотя такие блоки не рекомендуется использовать ввиду их опасности, все-таки иногда это делать приходится.

Перед тем, как устанавливать в такой блок гасящий конденсатор , его следует проверить простым включением в сеть: если за полчаса конденсатор не нагрелся, то его смело можно включать в схему. В противном случае его придется просто без сожаления выбросить.

Что показывает вольтметр?

При изготовлении и ремонте различных устройств, хоть и не очень часто, но приходится мерить переменные напряжения и даже токи. Если синусоида ведет себя так неспокойно, то вверх, то вниз, что будет показывать обычный вольтметр?

Среднее значение периодического сигнала, в данном случае синусоиды, подсчитывается как площадь, ограниченная осью абсцисс и графическим изображением сигнала, деленная на 2*π радиан или период синусоиды. Поскольку верхняя и нижняя часть абсолютно одинаковы, но имеют разные знаки, среднее значение синусоиды равно нулю, и мерить его совсем не нужно, и даже просто бессмысленно.

Поэтому измерительный прибор показывает нам среднеквадратичное значение напряжения или тока. Среднеквадратичным называется такое значение периодического тока, при котором на одной и той же нагрузке выделяется то же количество теплоты, что и на постоянном токе. Иными словами лампочка светит с той же яркостью.

Формулами это описывается вот так: Iсрк=0,707*Imax= Imax/√2 для напряжения формула та же, достаточно поменять одну букву Uсрк=0,707*Umax=Umax/√2. Именно эти значения показывает измерительный прибор. Их можно подставлять в формулы при расчете по закону Ома или при расчете мощности.

Но это далеко не всё, на что способен конденсатор в сети переменного тока. В следующей статье будет рассмотрено использование конденсаторов в импульсных схемах, фильтрах верхних и нижних частот, в генераторах синусоиды и прямоугольных импульсов.

Постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F — это частота, Ma — амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал — желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида — это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то «лохматый». Это связано с так называемыми « «. Шум — это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо «шумит» резистор. Значит «лохматость» сигнала — это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали — частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц — 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц — 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц — это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Продолжаем изучать электронику, и на очереди у нас разбор того, как ведет себя конденсатор в цепи переменного тока, постоянного тока, для чего он нужен, а также несколько примеров практического применения.

Конденсатор является пассивным элементом электронной схемы, состоящей их двух токопроводящих обкладок, которые разделены каким-нибудь диэлектриком.

Свойства и выполняемые функции

Основной задачей конденсатора является накопление определенного объема электростатического заряда на обкладках, после включения его в цепь под напряжением. Когда питание отключается, конденсатор сохраняет полученный заряд.

  • Если конденсатор подключен к замкнутой цепи, но уже без питания, или напряжение в ней будет ниже, чем то, что накоплено в конденсаторе, то произойдет полная либо частичная разрядка элемента с высвобождение накопленной энергии.

  • Тут же введем понятие о емкости конденсатора. Простыми словами – это количество электрической энергии, которую способен накопить элемент, включенный в сеть. Обозначается этот параметр латинской буквой «С», а измеряется он в Фарадах (F).

Интересно знать! Конденсаторы переменного тока большой емкости способны создавать при быстром разряде очень мощные импульсы. Использовать их можно, к примеру, в мощных фотовспышках.

  • Рассчитывается емкость по следующей формуле: C=q/U, где q – это заряд на одной обкладке в Кулонах (количество энергии, прошедшей через проводник за 1 сек при силе тока в 1 Ампер); а U – Напряжение в Вольтах между оболочками.

  • На корпусе любого конденсатора содержатся данные о его основных параметрах, среди которых есть и емкость. На фото выше выделено красным, такое обозначение. Там же можно узнать рабочие напряжение и температуру.
  • Все просто, однако стоит учитывать, что указанная емкость является номинальной, тогда как реальная ее величина может довольно сильно отличаться, на что оказывает влияние множество факторов.
  • Емкость конденсатором может разниться от единиц пикофарад до десятков фарад, что зависит от площади электрода (чаще алюминиевой фольги).

Интересно знать! Чтобы увеличить полезную емкость фольгу сворачивают в рулоны – так получаются цилиндрические конденсаторы.

Если в схеме требуется большая емкость конденсаторов, то их подключают параллельно. В таком случае сохраняется рабочее напряжение, но емкость будет увеличиваться прямопропорционально, то есть составит сумму емкостей подключенных конденсаторов.

Если конденсаторы соединить последовательно, то емкость изменяться не будет, точнее она будет немного меньше, чем минимальная емкость, включенная в цепь. Для чего же нужно такое подключение? При нем вероятность пробоя одного из конденсаторов сводится минимуму, то есть они как бы распределяют нагрузку.

  • Для конденсаторов характерен и такой параметр, как удельная емкость. Это прямое отношение емкости электро детали к массе или объему диэлектрика. Максимальные значения этого параметра могут быть достигнуты при наименьшей толщине диэлектрической прокладки, однако для пробоя такого конденсатора требуется меньшее напряжение, про которое мы сейчас и поговорим.
  • Маркировка детали также указывает номинальное напряжение. Тут все предельно просто – это значение показывает максимальный уровень напряжения в цепи, при которой радиодеталь сможет отработать весь свой срок службы, не меняя при этом сильно своих заданных параметров.
  • Отсюда простой вывод – напряжение на конденсаторе не должно превышать номинального, иначе его может пробить.
  • На уровень номинального напряжения влияют материалы, из которых конденсатор собран.

Понятие полярности для конденсаторов и их выход из строя

Интересно знать! У многих типов конденсаторов допустимое напряжение будет уменьшаться по мере его нагрева, поэтому на корпусах изделий также указывается и максимальная рабочая температура.

Выход из строя конденсаторов очень распространенная поломка в электротехнике. «Умирать» они могут по-тихому, просто вздувшись, или под канонаду нехилого взрыва, заливая все ближайшие детали электролитом, под «сценический дым» и прочие эффекты.

Именно поэтому диагностировать выход из строя этого элемента можно чисто визуально, без применения тестовой аппаратуры, но не всегда.

Многие электролитические конденсаторы (с оксидным диэлектриком), из-за особенностей взаимодействия диэлектрика и электролита, способны работать только при соблюдении определенной полярности, о чем обязательно гласит соответствующая маркировка на корпусе детали.

  • При попытке включить их в цепь в обратной полярности, конденсаторы обычно моментально выходят из строя – разрушается диэлектрик, закипает электролит, в результате чего произойдет тот самый взрыв.
  • Взрываются конденсаторы довольно часто, особенно в импульсных устройствах. Происходит это из-за перегрева, по причине утечки или увеличения эквивалентного последовательного сопротивления по мере старения детали.
  • Не секрет, что поврежденная деталь в любой схеме может быть заменена на новую, и устройство будет функционировать как и раньше, однако последствия взрыва могут быть достаточно серьезны — повредятся соседние элементы, что сильно осложнит ремонт, плюс возрастет его цена.

Для уменьшения последствий на корпусах конденсаторов большой емкости устанавливают клапан или же делают насечку с торца в виде букв «Х, К, и Т». Такие конденсаторы взрываются очень редко, из-за того, что либо клапан, либо разрушившийся по насечке корпус выпускают электролит в виде едких испарений, то есть давление внутри корпуса снижается.

Прочие параметры

Помимо тех параметров, что мы уже разобрали, конденсаторы обладают индуктивностью и собственным сопротивлением, поэтому схему реального конденсатора можно представить следующим образом.

К таковым относятся (обозначаем как в схеме выше):

Типы конденсаторов

Классифицируются конденсаторы, прежде всего, по типу используемого в них диэлектрика, который и определяет все электрические параметры элемента.

  • Вакуумные конденсаторы – строение их таково, что несколько коаксиальных цилиндров, которые встроены один в один, располагаются во внешнем стеклянном цилиндре. Для этих устройств характерна наибольшая мощность в единице объема.

  • Воздушные или газовые конденсаторы – бывают постоянной и переменной емкости. Применяются они в основном в электроизмерительном оборудовании, радиоприемниках и передатчиках, так как позволяют настраивать колебательные контуры.
  • Конденсаторы с жидким диэлектриком;

  • Конденсаторы с твердыми неорганическими диэлектриками – к ним относятся модели на стеклоэмалях, стеклокерамике, стеклопленках, слюде, керамике и прочем. Для таких конденсаторов характерна очень большая емкость, несмотря на их скромные габариты.

  • Конденсаторы с твердыми органическими диэлектриками – здесь разнообразие тоже велико: бумажные и металлобумажные, пленочные и комбинированные.

  • Отдельно можно выделить конденсаторы электролитические и оксидно-полупроводниковые , так как их отличает большая удельная емкость. В качестве диэлектрика в них используется слой оксида вокруг металлического анода. Вторая обкладка в нем – это либо электролит, в первом случае, либо полупроводник – во втором. Анод, в зависимости от конденсатора, может быть изготовлен из танталовой, ниобиевой или алюминиевой фольги, а также из спеченного порошка.

Такая классификация не единственная и различают конденсаторы и по возможности изменения их емкости:

  • Постоянные – это конденсаторы, емкость которых является постоянной в течение срока службы, не считая изменений связанных со старением детали.

  • Переменные – этот вид способен менять свою емкость во время работы оборудования. Управление такими конденсаторами реализуется через механику, электрическое напряжение, а также температуру.

  • Подстроечные – емкость этих конденсаторов также может меняться, но происходит это не во время работы аппаратуры, а разово, при установке или настройке. Применяются они в основном при выравнивании начальных емкостей у сопрягаемых контуров, а также для регулировки параметров цепей схем.

Применение конденсаторов

Заканчивая первую часть статьи, не можем не обратить внимание на сферы применения этих элементов электрических цепей. А применяются они повсеместно.

  • Их комбинируют с катушками индуктивности и резисторами, чтобы получать цепи, в которых свойства тока будут зависеть от его частоты, например, фильтр частот или цепь обратной связи колебательного контура.
  • В системах, где требуется создание мощного импульса, про которые мы уже сегодня упоминали – вспышки фотоаппаратов, импульсные лазеры, генераторы Маркса и прочее.
  • Применяются конденсаторы и в качестве элемента памяти, так как способны сохранять заряд достаточно длительное время. Это же свойство применяется в устройствах, предназначенных для хранения энергии.
  • Если говорить об электротехнике промышленного уровня, то конденсаторы применяются для компенсации реактивной мощности и в качестве фильтров высших гармоник.

И это далеко не все сферы, но мы думаем, что этого пока достаточно. Давайте лучше перейдем к опытам и посмотрим, что же происходит с током, когда он проходит через конденсатор.

Конденсатор в цепях электрического тока

Итак, мы приблизительно поняли, что такое конденсатор, но как работает сей элемент, еще толком не разобрали.

Цепь постоянного тока

Если говорить простыми словами, то конденсатор, или «кондер», как его называют в народе – это небольшой элемент, который словно аккумулятор способен накапливать в себе некий заряд, который он готов разрядить за считанные доли секунды

Интересно знать! В отличие от аккумулятора в конденсаторе отсутствует источник ЭДС.

Чтобы кондеру разрядиться, ему нужно замкнуть контакты напрямую, либо через цепь. Вроде бы все ясно, но как происходит течение тока в конденсаторе при подключении его в сеть.

  • Начнем с постоянного тока, и проведем один небольшой опыт. Для этого нам понадобятся сам конденсатор, источник постоянного тока на 12 Вольт и лампочка с проводами, тоже на 12 Вольт.

  • Подключаем все это вместе, как показано на фото выше, и видим, что ничего не происходит – лампочка не горит.

  • Меняем положение «крокодила» так, чтобы пустить ток в обход конденсатора. И, о чудо! Лампочка загорелась! Почему же так происходит?
  • Все просто, достаточно помнить, что ток через конденсатор протекает, только когда он заряжается и разряжается, причем напряжение всегда будет отставать от тока.
  • Разряженный конденсатор сродни короткому замыканию в цепи – при его подключении к источнику напряжения, в первый момент времени напряжения в нем нет, но зато имеется ток, который в этот момент времени является максимальным (вот вам и отставание).
  • Ток течет через конденсатор, и тот начинает накапливать заряд, увеличивая свое внутреннее напряжение до тех пор, пока оно не сравняется с напряжением источника питания и кондер не заполнит всю свою емкость.
  • В этот момент времени ток перестает течь, а так как конденсатор не может разрядиться, то, соответственно, и лампочка гореть не будет.
  • Сравнить этот процесс можно с водяной системой в виде сообщающегося сосуда, разделенного заслонкой, при том, что одна часть пустая, а вторая полная. Уберите препятствие, и вода потечет во второй сосуд, пока давления не выровняются, то есть напор не спадет до нуля.
  • А что было бы, если бы конденсатор отсоединился от цепи и закоротился? Да все то же самое! В первый момент времени ток будет максимальным при неизменном напряжении. Ток побежит вперед, а напряжение вслед за ним, пока весь заряд не уйдет.
  • Снова в качестве примера берем водяную систему, состоящую из полного бачка, который будет играть роль конденсатора, и краника на нем, через который можно осуществить слив воды. Открывает кран и видим, что вода тут же потекла, при этом давление (напряжение) будет падать плавно, по мере опустошения емкости.

Эти же закономерности характерны и для синусоидального тока, о чем мы сейчас и поговорим.

Цепь переменного тока

Давайте для начала проведем некоторый опыт, а потом так же его объясним простым языком.

Нам понадобятся: конденсатор емкостью 1 микрофарад, обычный резистор на 100 Ом и генератор частот. Соединяем это все, как показано на следующем фото.

Далее по схеме подключаем цифровой осциллограф, который будет работать в двухканальном режиме, чтобы видеть сигналы на входе и на выходе: первый канал (красный) – это то, что выдает генератор, а второй (желтый) – снимаемый с нагрузки, то есть с резистора.

  • Итак, то, что конденсатор постоянный ток (ток с нулевой частотой) не пропускает, мы уже убедились. А что будет, если подать частоту в 100 Гц?

  • С генератора подается сигнал с амплитудой в 2 Вольта и частотой в 100Гц. На втором канале мы видим ту же частоту, но значительно меньшую амплитуду в 136 миливольта. Сигнал при этом искажают помехи, которые ловятся из окружающего пространства.
  • Желтый график сместился влево, опережая красный. Перед вами тот самый сдвиг фаз.

Совет! Тут стоит понимать, что опережает только фаза, а не сигнал. В противном случае перед нами бы была простейшая машина времени, а так все в пределах понимания.

  • То есть, имеется в виду разница между начальными фазами напряжений, имеющих одинаковую частоту.

  • Теперь увеличим частоту до 500 Гц. Видим, что амплитуда сигнала возросла до 560 миливольт, а сдвиг фаз стал меньшим.

  • Наращиваем частоту до 2 кГц – тенденция сохраняется.

  • Теперь выставляем частоту в 10 кГц, и видим, что амплитуда практически сравнялась, а сдвиг фаз практически незаметен.

  • Даем на генераторе максимальную частоту и видим, что показатели каналов практически выровнялись.

Что же это все означает? Сопротивление конденсатора в цепи переменного тока тем меньше, чем выше его частота. При этом уходит и сдвиг фаз.

Интересно знать! При подключении постоянного тока, частота которого равна нулю, величина фазового сдвига составляет π/2 или 90 градусов.

Но только ли частота влияет на сопротивление конденсаторов в цепи переменного тока? Давайте повторим наш опыт, но уже с конденсатором меньшей емкости, скажем – 0,1 микрофарад.

  • Начинаем, как и в прошлый раз, с частоты в 100 Гц. Сразу заметно, что амплитуда уменьшилась до 101 миливольта, тогда как ранее она составляла 136.

  • Амплитуда по-прежнему меньше.

  • На максимальных частотах сопротивление уже малое, но и сдвиг фаз и меньшая амплитуда остаются.

Делаем нехитрые выводы, и понимаем, что сопротивление конденсатора еще зависит и от его емкости – чем она больше, тем ниже сопротивление.

В попытке ответить на вопрос, как рассчитать сопротивление конденсатора переменному току, математики и физики вывели следующую формулу:

Поставьте в эту формулу частоту равную нулю, и вы получите ноль, или бесконечное сопротивление. На практике мы имеем фактический фильтр высоких частот – впаяйте конденсатор перед динамиком, и вы услышите, что он воспроизводит только высокие частоты. Поставить такой фильтр легко своими руками – инструкция нужна лишь при расчете параметров сопротивления.

Ну, а что же происходит внутри самого конденсатора в этот момент?

Вспоминаем, что есть синусоидальный ток. Состоит такой ток из повторяющегося периода, первую половину которого он течет в одном направлении, а вторую – в обратном. Периоды делятся на полупериоды, каждый из которых имеет фазы возрастания, пика и убывания напряжения.

  • Итак, первый четвертьпериод мы фактически разобрали на примере постоянного тока – конденсатор заряжается, пока его напряжение не достигнет пикового значения.
  • В начале второго четвертьпериода, напряжение на генераторе начинает, ускоряясь, убывать. Образующаяся разница напряжений заставляет конденсатор разряжаться, отдавая ток в направлении генератора, то есть в обратном, чем он тек при заряде — оказывает сопротивление.
  • В момент, когда заканчивается первый полупериод, напряжение в цепи и конденсаторе становится нулевым, тогда как ток, наоборот – максимальным (эту зависимости мы разобрали выше).
  • Начинается третья четверть, и конденсатор снова заряжается, только уже в обратной полярности. При этом ток, продолжая течь в ту же сторону, начиная убывать, с ростом напряжения внутри конденсатора.
  • Четвертая четверть аналогична второй – конденсатор разряжается, и ток течет в обратном направлении. То есть два полупериода являются буквально зеркальными копиями друг друга.

По итогу мы имеем, что за один период конденсатор дважды успевает зарядиться и разрядиться, что говорит о постоянном прохождении в цепи зарядный и разрядных токов, то есть что ток здесь переменный.

Если бы мы в нашем опыте вместо резистора использовали лампочку, то увидели бы ее свечение. Однако ток ее питающий был бы током заряда и разряда, а не проходящим сквозь диэлектрик конденсатора.

Чем больше емкость конденсатора, тем больший заряд передается в цепи во время циклов заряда и разряда этого элемента, а, следовательно, сопротивление становится меньше. Увеличение частоты дает такой же эффект, но уже за счет количества передачи заряда за то же время, отчего ток тоже растет. Это как два коммерсанта – один получает доход, сделав большую накрутку продав разово вещь, а второй имеет то же самое, но за счет большего оборота с меньшей наценкой.

Из-за этой простой зависимости, сопротивление, которое оказывает конденсатор току в цепи, называется емкостным.

На этом, пожалуй, закончим. Мы популярно объяснили, что представляет собой электрическая цепь переменного тока с реальным конденсатором. Да, материал не прост в освоении, но если разобраться – все не так страшно. В дополнение обязательно посмотрите подобранное нами видео, чтобы снять все возможные вопросы окончательно.



Загрузка...