sonyps4.ru

Каким образом синтезируется цвет в модели rgb. Что такое цветовая модель

HEX / HTML

Цвет в формате HEX - это ни что иное, как шестнадцатеричное представление RGB.

Цвета представляются в виде трёх групп шестнадцатеричных цифр, где каждая группа отвечает за свой цвет: #112233, где 11 - красный, 22 - зелёный, 33 - синий. Все значения должны быть между 00 и FF.

Во многих приложениях допускается сокращённая форма записи шестнадцатеричных цветов. Если каждая из трёх групп содержит одинаковые символы, например #112233, то их можно записать как #123.

  1. h1 { color: #ff0000; } /* красный */
  2. h2 { color: #00ff00; } /* зелёный */
  3. h3 { color: #0000ff; } /* синий */
  4. h4 { color: #00f; } /* тот же синий, сокращённая запись */

RGB

Цветовое пространство RGB (Red, Green, Blue) состоит из всех возможных цветов, которые могут быть получены путём смешивания красного, зелёного, и синего. Эта модель популярна в фотографии, телевидении, и компьютерной графике.

Значения RGB задаются целым числом от 0 до 255. Например, rgb(0,0,255) отображается как синий, так как синий параметр установлен в его самое высокое значение (255), а остальные установлены в 0.

Некоторые приложения (в частности веб-браузеры) поддерживают процентную запись значений RGB (от 0% до 100%).

  1. h1 { color: rgb(255, 0, 0); } /* красный */
  2. h2 { color: rgb(0, 255, 0); } /* зелёный */
  3. h3 { color: rgb(0, 0, 255); } /* синий */
  4. h4 { color: rgb(0%, 0%, 100%); } /* тот же синий, процентная запись */

Цветовые значения RGB поддерживаются во всех основных браузерах.

RGBA

С недавних пор современные браузеры научились работать с цветовой моделью RGBA - расширением RGB с поддержкой альфа-канала, который определяет непрозрачность объекта.

Значение цвета RGBA задается в виде: rgba(red, green, blue, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: rgb(0, 0, 255); } /* синий в обычном RGB */
  2. h2 { color: rgba(0, 0, 255, 1); } /* тот же синий в RGBA, потому как непрозрачность: 100% */
  3. h3 { color: rgba(0, 0, 255, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: rgba(0, 0, 255, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: rgba(0, 0, 255, 0); } /* полностью прозрачный */

RGBA поддерживается в IE9+, Firefox 3+, Chrome, Safari, и в Opera 10+.

HSL

Цветовая модель HSL является представлением модели RGB в цилиндрической системе координат. HSL представляет цвета более интуитивным и понятным для восприятия образом, чем типичное RGB. Модель часто используется в графических приложениях, в палитрах цветов, и для анализа изображений.

HSL расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Lightness/Luminance (светлота/светлость/светимость, не путать с яркостью).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Lightness является процентным значением светлости (от 0% до 100%).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный */
  2. h2 { color: hsl(120, 100%, 75%); } /* светло-зелёный */
  3. h3 { color: hsl(120, 100%, 25%); } /* тёмно-зелёный */
  4. h4 { color: hsl(120, 60%, 70%); } /* пастельный зеленый */

HSL поддерживается в IE9+, Firefox, Chrome, Safari, и в Opera 10+.

HSLA

По аналогии с RGB/RGBA, для HSL имеется режим HSLA с поддержкой альфа-канала для указания непрозрачности объекта.

Значение цвета HSLA задается в виде: hsla(hue, saturation, lightness, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный в обычном HSL */
  2. h2 { color: hsla(120, 100%, 50%, 1); } /* тот же зелёный в HSLA, потому как непрозрачность: 100% */
  3. h3 { color: hsla(120, 100%, 50%, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: hsla(120, 100%, 50%, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: hsla(120, 100%, 50%, 0); } /* полностью прозрачный */

CMYK

Цветовая модель CMYK часто ассоциируется с цветной печатью, с полиграфией. CMYK (в отличие от RGB) является субтрактивной моделью, это означает что более высокие значения связаны с более тёмными цветами.

Цвета определяются соотношением голубого (Cyan), пурпурного (Magenta), жёлтого (Yellow), с добавлением чёрного (Key/blacK).

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

Например, для получения цвета «PANTONE 7526» следует смешать 9 частей голубой краски, 83 частей пурпурной краски, 100 - жёлтой краски, и 46 - чёрной. Это можно обозначить следующим образом: (9,83,100,46). Иногда пользуются такими обозначениями: C9M83Y100K46, или (9%, 83%, 100%, 46%), или (0,09/0,83/1,0/0,46).

HSB / HSV

HSB (также известна как HSV) похожа на HSL, но это две разные цветовые модели. Они обе основаны на цилиндрической геометрии, но HSB/HSV основана на модели «hexcone», в то время как HSL основана на модели «bi-hexcone». Художники часто предпочитают использовать эту модель, принято считать что устройство HSB/HSV ближе к естественному восприятию цветов. В частности, цветовая модель HSB применяется в Adobe Photoshop.

HSB/HSV расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Brightness/Value (яркость/значение).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Brightness является процентным значением яркости (от 0% до 100%).

XYZ

Цветовая модель XYZ (CIE 1931 XYZ) является чисто математическим пространством. В отличие от RGB, CMYK, и других моделей, в XYZ основные компоненты являются «мнимыми», то есть вы не можете соотнести X, Y, и Z с каким-либо набором цветов для смешивания. XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

LAB

Цветовая модель LAB (CIELAB, «CIE 1976 L*a*b*») вычисляется из пространства CIE XYZ. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета.

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.

Модель RGB (Red - Красный, Green - Зеленый, Blue - Синий) описывает излучаемые цвета.

Модель R G B (Red - Красный, Green - Зеленый, Blue - Синий) описывает излучаемые цвета. Базовыми компонентами модели являются три цвета лучей - красный, зеленый, синий. При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых в разных соотношениях. Каждая составляющая может изменяться в пределах от 0 до 255, как было рассмотрено в предыдущей главе. Такой способ предоставляет доступ ко всем 16 миллионам цветов. При сложении (смешении) двух лучей основных цветов результат оказывается светлее, чем отдельные составляющие . Цвета этого типа называются аддитивными . Эта модель используется во всех мониторах , проекторах и других устройствах, которые излучают или фильтруют свет, включая телевизоры, кинопроекторы и цветные прожекторы. Web-дизайнер в своей работе ориентируется на такое устройство вывода, как монитор, поэтому мы будем учиться работать в основном с изображениями в модели RGB. Напомню, что она является трехканальной (имеет три составляющие) и 24-битной (цвет одного пиксела представляется 24 битами - по байту на канал).


Цветовое пространство модели удобно представить в виде цветового куба . По осям координат откладываются значения цветовых каналов. Каждый из них может принимать значения от нуля (нет света) до максимального (наибольшая яркость света). Внутренняя часть образовавшегося куба содержит все цвета модели. В начале координат значения каналов равны нулю (черный цвет). В противоположной точке смешиваются максимальные значения каналов, образуя белый цвет. На линии, соединяющей эти точки, располагаются смеси равных значений каналов, образуя серые оттенки от черного до белого - серую шкалу. Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов. В обычном RGB-изображении каждый цветовой канал и серая шкала имеют 256 градаций (оттенков).


Изображение, созданное в цветовой модели RGB, может быть сохранено в любом графическом формате, поддерживаемом программой Photoshop, кроме формата GIF.


Недостатком режима RGB является то, что далеко не все цвета, которые могут быть в нем созданы, можно вывести на печать. Избежать потери цветов можно, редактируя изображение в режиме CMYK.

Модели CMY и CMYK.

Модель C M Y описывает отраженные цвета (краски). Они образуются в результате вычитания части спектра падающего света и называются субтрактивными . При смешении двух цветов результат темнее обоих исходных, поскольку каждый из цветов поглощает часть спектра. Иначе говоря, чем больше краски мы положили, тем больше вычли из белого, т.е. тем ниже будет результирующая яркость.


Для начала расшифруем название этой модели. C=Cyan (бирюзовый ), M=Magenta (пурпурный ), Y=Yellow (желтый ). Каналы CMY - это результат вычитания основных цветов модели RGB из белого цвета (то есть цвета маскимальной яркости). Запишем "формулы" получения этих цветов:

  • Бирюзовый = Белый - Красный
  • Пурпурный = Белый - Зеленый
  • Желтый = Белый - Синий

Можно сказать, что модель CMY обратна модели RGB . Посмотрите на рисунок - базовые цвета модели CMY находятся напротив базовых цветов модели RGB. Согласно модели RGB, белый цвет представляет собой сумму трех компонент максимальной яркости, т.е. можно записать:
Белый = Красный + Зеленый + Синий.
После нехитрых математических преобразований получаем следующее представление цветов модели CMY:

  • Бирюзовый = Зеленый + Синий
  • Пурпурный = Красный + Синий
  • Желтый = Красный + Зеленый

Сравните эти формулы с рисунком - все правильно. Желтый цвет лежит между красной и зеленой областями и т.д. Если это рисунок вас не убедил - посмотрите на рисунок модели RGB в предыдущей главе.


Развитием модели CMY является модель CMYK . Она описывает реальный процесс цветной печати на офсетной машине и цветном принтере. Пурпурная, голубая и желтая краски (полиграфическая триада) последовательно наносятся на бумагу в различных пропорциях, и таким способом может быть репродуцирована значительная часть видимого спектра. В области черного и темных цветов наносятся не цветные, а черная краска. Это четвертый базовый компонент, он введен для описания реального процесса печати. Черный компонент сокращается до буквы K (blacK или, по другой версии, Key ). CMYK - четырехканальная цветовая модель. Зачем в модель вводится черная краска? Реальные краски содержат примеси, и при смешении дадут не черный, а темно-коричневый цвет. К тому же при печати очень темных и черного цвета было бы необходимо большое количество каждой краски, что ведет к переувлажнению бумаги и неоправданному расходу красок.


Описанные цветовые модели являются аппаратно-зависимыми . При выводе одного и того же изображения на различных устройствах (например, на двух разных мониторах) вы, скорее всего, получите разный результат. То есть цвет зависит как от значений базовых составляющих, так и от параметров устройств: качества и марки данной печатной краски, свойств использованной бумаги, свойств люминофора и других параметров конкретного монитора, принтера или печатного пресса. Кроме того, существование разных моделей описания для излучаемых и отраженных цветов весьма неудобно при компьютерной подготовке цветных изображений. В полиграфический процесс входят системы, работающие как в модели RGB (сканер, монитор), так и в модели CMYK (фотонабор и печатная машина). В процессе работы приходится преобразовывать цвет из одной модели в другую. Поскольку эти модели имеют разный цветовой охват, преобразование часто сопряжено с потерей части оттенков. Поэтому одной из основных задач при работе с цветными изображениями становится достижение предсказуемого цвета. Для этого создана система цветокоррекции (Color Management System, СMS ). Это программная система, цель которой, во-первых, достичь одинаковых цветов для всех этапов полиграфического процесса, от сканера до печатного станка, а во-вторых - обеспечить стабильное воспроизведение цвета на всех выводных устройствах (например, на любом мониторе). Пространство этой модели аналогично пространству модели RGB, в которой перемещено начало координат. Смешение максимальных значений всех трех компонентов дает черный цвет. При полном отсутствии краски (нулевые значения составляющих) получится белый цвет (белая бумага). Смешение равных значений трех компонентов даст оттенки серого.



Модель CMYK предназначена специально для описания печатных изображений. Поэтому ее цветовой охват значительно ниже, чем у RGB (ведь она описывает не излучаемые, а отраженные цвета, интенсивность которых всегда меньше). Кроме того, как прикладная модель, CMYK жестко привязана к параметрам печати (краски, тип печатной машины и т. д.), которые очень разнятся для каждого случая. При переводе в CMYK нужно задать массу технологических характеристик - указать, какими конкретно красками и на какой бумаге будет отпечатано изображение, некоторые особенности печатного оборудования и т. д. Для разных заданных значений вид изображения на печати и на экране будет разным. Еще одной особенностью модели является теоретически не обоснованное введение дополнительного черного канала. Он предназначен для исправления недостатков современного печатного оборудования. В темных областях особенно хорошо видны погрешности совмещения, возможно переувлажнение бумаги, кроме того, смесь CMY-красок не дает глубокого черного тона. Все эти "узкие места" можно устранить применением дополнительной черной краски. При переводе в CMYK программа заменяет в темных областях триадные краски на черную. Эта замена производится по разным алгоритмам, в зависимости от состава изображения (черный цвет подчеркивает контуры предметов, визуально усиливая резкость), особенностей печати и других причин. Таким образом, в зависимости от установок перевода вид изображения меняется. Неудачный перевод в CMYK (цветоделение ) может привести к серьезным потерям качества. Цветоделение обычно предполагает печать тиража (иначе зачем CMYK), а это, в свою очередь, связано с большими финансовыми вложениями. Поэтому, если вам приходится выполнять подготовку файлов для типографии, необходимо изучить специальную литературу по предпечатной подготовке.


Рассмотрим каналы в CMYK-изображении. Для эксперимента нам потребуется файл photo.jpg . Как видите, в области заголовка окна также показана модель изображения. Сейчас это RGB. Чтобы перевести изображение в цветовой режим CMYK, выберите в меню Image команду Mode > CMYK . Откройте палитру Channels. Там присутствует пять строк - четыре строки цветовых каналов и одна строка совмещенного канала. Активизация и регулирование видимости каналов производятся точно так же, как для RGB - изображения.


Отключите видимость всех каналов, кроме голубого. Заметьте, что изображение стало много светлее. Каналы CMYK складываются так же, как краски, положенные на бумагу. Практически сейчас перед вами голубая форма для печати файла. Именно таким образом будет распределяться краска на отпечатке. Насыщенность цвета максимальна в голубой и синей областях. Они окрашены насыщенным голубым цветом. Голубой есть также в областях оттенков серого. Это означает, что в CMYK оттенки серого формируются из смеси равного количества всех компонентов модели. Область черного и очень темных оттенков изображается на печати черной краской, поэтому она пока остается белой.


Теперь активизируйте изображение черного канала, не отключая голубой. Вы видите форму, в соответствии с которой будет наноситься черная краска. Отключите видимость черного канала, добавьте к голубому отображение желтого канала. Как видите, смешение красок в модели происходит по гораздо более понятному принципу - при сложении голубой и желтой составляющих получаются оттенки зеленого. Зеленый цвет получили также серые участки, поскольку они состоят из равных количеств каждого из базовых компонентов. Отметьте, что изображение тем темнее, чем больше каналов видно на экране. Сделайте видимым и пурпурный канал. Изображение в средних и светлых тонах уже приобрело нормальный вид. В тенях же остались белые участки - все они будут напечатаны черным, а не смесью трех цветных красок.

При выводе цветных компьютерных карт на печать тем или иным способом, неизбежно возникает проблема обеспечения точности при передаче исходных цветов оригинала. Эта проблема возникает по целому ряду причин.

Во-первых, сканеры и мониторы работают в аддитивной цветовой модели RGB , основанной на правилах сложения цветов, а печать осуществляется в субтрактивной модели CMYK , в которой действуют правила вычитания цветов.

Во-вторых , способы передачи изображения на мониторе компьютера и на бумаге различны.

В-третьих , процесс репродуцирования происходит поэтапно и осуществляется на нескольких устройствах, таких как сканер, монитор, фотонаборный автомат, что требует их настройки в целях минимизации искажений цвета на протяжении всего технологического цикла - процесс калибровки.

Модель RGB.

Цветовая модель RGB (рис. 1) (R - Red - красный, G - Green - зеленый, B - Blue - синий) используется для описания цветов, видимых в проходящем или прямом свете. Она адекватна цветовому восприятию человеческого глаза. Поэтому построение изображения на экранах мониторов, в сканерах, цифровых камерах и других оптических приборах соответствует модели RGB. В компьютерной RGB-модели каждый основной цвет может иметь 256 градаций яркости , что соответствует 8-битовому режиму .

Рис. 1. Цветовая модель RGB

Модель CMY (CMYK)

Цветовая модель CMY (рис. 2) C - Cyan - голубой, M - Magenta - пурпурный, Y - Yellow - желтый, используется для описания цветов, видимых в отраженном свете (например, для цвета краски, нанесенной на бумагу). Теоретически сумма цветов CMY максимальной интенсивности должна давать чистый черный цвет. В реальной же практике из-за несовершенства красящих пигментов краски и изначальной неустойчивости к голубому цвету при цветоделении, сумма голубой, пурпурной и желтой красок дают грязно-коричневый цвет. Поэтому в печати используется еще и четвертый краситель - черный - blacK , который дает насыщенный, однородный черный цвет. Его применяют для печати текста и оформления других важных деталей, а также для корректировки общего тонального диапазона изображений. Насыщенность цвета в модели CMYK измеряется в процентах , так что каждый цвет имеет 100 градаций яркости .

Основной задачей процесса репродуцирования - является конвертация изображения из модели RGB в модель CMYK . Данное преобразование осуществляется при помощи специальных программных фильтров с учетом всех будущих установок печати: системы триадных красок, коэффициента растискивания растровой точки, способа генерации черного цвета, баланса красок и других. Таким образом, цветоделение является сложным процессом, от которого во многом зависит качество итогового изображения. Но даже при оптимальной конвертации из RGB в CMYK неизбежно происходит потеря некоторых оттенков. Это связано с разной природой данных цветовых моделей. Следует отметить также, что модели RGB и CMYK не могут передать всего спектра цветов, видимых человеческим глазом.

Рис. 2. Цветовая модель СMY

Модель HSB.

Характеризовать цвет можно с использованием других визуальных компонентов. Так, в модели HSB базовое цветовое пространство строится по трем координатам: цветовому тону (Hue) ; насыщенности (Saturation) ; яркости (Brightness) . Эти параметры можно представить в виде трех координат, с помощью которых можно графически определять положение видимого цвета в цветовом пространстве.

Рис. 3. Цветовая модель HSB

На центральной вертикальной оси откладывается яркость (рис. 3), а на горизонтальной - насыщенность . Цветовому тону соответствует угол, под которым ось насыщенности отходит от оси яркости . В районе внешнего радиуса находятся насыщенные, яркие цветовые тона, которые по мере приближения к центру смешиваются и становятся менее насыщенными. При перемещении по вертикальной оси цвета различных тонов и насыщенности становятся либо светлее, либо темнее.

В центре, где все цветовые тона смешиваются, образуется нейтральный серый цвет.

Данная цветовая модель хорошо согласуется с восприятием человека: цветовой тон является эквивалентом длины волны света, насыщенность - интенсивности волны, а яркость характеризует количество света.

Система CIE.

Цветовое пространство можно использовать для описания диапазона тех цветов, которые воспринимаются наблюдателем или воспроизводятся устройством. Этот диапазон называется гаммой . Данный трехмерный формат также очень удобен для сравнения двух или нескольких цветов. Трехмерные цветовые модел и и трехзначные цветовые системы , такие как RGB , CMY и HSB , называются трехкоординатными колориметрическими данными .

Для любой системы измерения требуется повторяемый набор стандартных шкал. Для колориметрических измерений цветовую модель RGB в качестве стандартной использовать нельзя, потому что она неповторяема - это пространство зависит от конкретного устройства. Поэтому возникла необходимость создания универсальной цветовой системы. Такой системой является CIE. Для получения набора стандартных колориметрических шкал, в 1931 году Международная комиссия по освещению - Commission Internationale de l"Eclairage (CIE ) - утвердила несколько стандартных цветовых пространств, описывающих видимый спектр. При помощи этих систем можно сравнивать между собой цветовые пространства отдельных наблюдателей и устройств на основе повторяемых стандартов.

Цветовые системы СIЕ подобны другим трехмерным моделям, рассмотренным выше, поскольку, для того, чтобы определить положение цвета в цветовом пространстве, в них тоже используется три координаты. Однако в отличие от описанных выше пространства CIE - то есть CIE XYZ, CIE L*a*b* и CIE L*u*v* - не зависят от устройства, то есть диапазон цветов, которые можно определить в этих пространствах, не ограничивается изобразительными возможностями того или иного конкретного устройства или визуальным опытом определенного наблюдателя.

CIE XYZ.

Главное цветовое пространство CIE - это пространство CIE XYZ. Оно построено на основе зрительных возможностей так называемого стандартного наблюдателя , то есть гипотетического зрителя, возможности которого были тщательно изучены и зафиксированы в ходе проведенных комиссией CIE длительных исследований человеческого зрения. В этой системе три основных цвета (красный, зеленый и синий) стандартизированы по длине волны и имеют фиксированные координаты в координатной плоскости xy.

0.72

0.28

0.18

0.27

0.72

0.08

l, mm

700.0

564.1

435.1

По полученным в результате исследований данным была построена диаграмма цветности xyY - хроматическая диаграмма (рис. 11).

Все оттенки, видимые человеческим глазом, расположены внутри замкнутой кривой. Основные цвета модели RGB образуют вершины треугольника. В данном треугольнике заключены цвета, отображаемые на мониторе. Цвета модели CMYK, которые могут быть воспроизведены при печати, заключены в многоугольник. Третья координата Y, перпендикулярна к любой точке кривой и отображает градации яркости того или иного цвета.

Модель CIE Lab

Данная модель создана как усовершенствованная модель CIE и также является аппаратно-независимой. Идея, лежащая в основе модели Lab, состоит в том, что каждый шаг в увеличении числового значения одного канала соответствует одному и тому же визуальному восприятию, что и другие шаги.

В модели Lab:

Величина L характеризует светлоту (Lightness) (от 0 до 100%);

Индекс а определяет диапазон цвета по цветовому колесу от зеленого до красного (- 120 (зеленый) до +120 (красный));

Индекс b определяет диапазон от синего (- 120) до желтого (+120).

В центре колеса насыщенность цветов равна 0.

Цветовой охват Lab полностью включает цветовые охваты всех других цветовых моделей и человеческого глаза. Издательские программы используют модель Lab как промежуточную при конвертации RGB CMYK.

Вы в детстве никогда не развлекались, разглядывая через увеличительное стекло окружающие предметы? Если нет, то попробуйте прямо сейчас — возьмите лупу и посмотрите вот на эту белую страницу. А те, кто были любознательными детьми, и так знают: картинка будет примерно такая.

И это именно белый цвет. Почему же мы видим цветные точки?

Дело в том, что передачи цветов в телевизорах, мониторах компьютеров и телефонов используется цветовая модель RGB . RGB — это аббревиатура английских слов Red, Green, Blue, то есть, «красный», «зеленый», «синий» — это и есть основные цвета в этой модели.

Но почему именно красный-зеленый-синий, кому это пришло в голову и почему при смешении они дают белый? Разберемся по порядку.

История вопроса

В конце 1850-х - начале 1860-х годов Джеймс Максвелл, ныне известный физик, а тогда — молодой выпускник Кембриджа, занимался изучением теории цвета. Теория цвета берет свое начало в работах Исаака Ньютона (мы вспоминали о его опытах с разложением света, когда говорили о цветах). Максвелл проводил эксперименты по смешению цвета, для которых использовал цветовой волчок — прикрепленный к оси диск, сектора которого были раскрашены разные цвета.

В своих работах Максвелл развивал идеи Томаса Юнга, который выдвинул предположение о существовании трех основных цветов: красного, зеленого и синего — в соответствии с тремя типами чувствительных волокон в сетчатке глаза. Как мы помним, в сетчатке есть два вида фоторецепторов: палочки и колбочки. Колбочки отвечают за цветовое зрение и, в свою очередь, делятся еще на три вида: одни чувствительны к красно-желтой, другие — к зелено-желтой, а третьи — к сине-фиолетовой части спектра.

Эту картинку вы уже где-то видели:) Обратите внимание на три вида колбочек.

Так вот, Максвелл с помощью своего волчка продемонстрировал, что белый цвет нельзя получить смешением синего, красного и желтого, как считалось ранее, а основными цветами являются красный, зеленый и синий.

Как монитор передает цвета

Хотя Максвелл проводил свои исследования еще в XIX веке, цветовая модель RGB на практике стала использоваться позже — когда появились телевизоры и мониторы, сначала с электронно-лучевой трубкой, а потом жидкокристаллические и плазменные.

В ЭЛТ изображение создается с помощью трех электронных прожекторов, каждый из которых излучает свет своего цвета. На экран нанесен люминофор — вещество, которое светится под воздействием этих прожекторов. Причем люминофор тоже трех видов: один светится от излучения красной пушки, второй — от зеленой, третий — от синей.

  1. Электронные пушки
  2. Электронные лучи
  3. Фокусирующая катушка
  4. Отклоняющие катушки
  5. Маска, благодаря которой красный луч попадает на красный люминофор, зеленый луч — на зеленый люминофор, синий — на синий.
  6. Красные, зелёные и синие зёрна люминофора
  7. Маска и зёрна люминофора (увеличено)

При всех конструктивных и технологических отличиях от ЭЛТ, жидкокристаллические и плазменные мониторы работают по тому же принципу: под воздействием энергии загорается красный, зеленый или синий люминофор.

Минимальная единица изображения, создаваемого монитором, называется пикселем . Цвет пикселя получается из комбинации входящих в него трех точек люминофора (эти три точки называются триадами).

Вот она, та самая картинка, которую можно увидеть, посмотрев на монитор в лупу. Пиксели не обязательно бывают прямоугольные, но чаще всего они выглядят именно так.

Посмотрите вот этот выпуск детской передачи «Галилео». Ведущий здесь повторяет опыт Максвелла с цветовым волчком и очень наглядно показывает, как различается смешение цветов от излученного и отраженного света.

В этом опыте показаны два метода смешения цветов: аддитивный и субтрактивный . В цветовой модели RGB используется аддитивный, поэтому сейчас нас интересует именно он.

Аддитивный метод основан на сложении цветов (addition означает «сложение»). Называется он так, потому что цвета получаются путем добавления к черному. Этот метод применяется для получения цветов от излученного света, в частности, в компьютерных мониторах.

Как на бумаге отсутствие цвета есть белый цвет, так на мониторе отсутствие цвета — черный. Цвета здесь получаются смешением трех основных цветов: красного (Red), зеленого (Green) и синего (Blue). Смешение красного и синего дают пурпурный (Magenta), синего и зеленого — голубой (Cyan), зеленого и красного — желтый (Yellow). А смешение всех трех основных цветов — белый.

Числовое представление модели RGB

Поскольку в модели RGB есть три основные составляющие цвета, ее можно представить в виде куба. Получается, что каждая точка в пространстве этого куба (которую можно задать с помощью трех координат) — определенный цвет.

В компьютерах каждая из координат задается целым числом — от 0 до 255.

В HTML используется шестнадцатеричная запись: каждая координата задается двумя шестнадцатеричными числами. Вот, например, показанный выше цвет с RGB-координатами (240, 103, 162) в шестнадцатеричной записи выглядит так: #f067a2.

А вот как выглядит смешение цветов в числовом представлении:

Ограничения модели RGB

В теории все выглядит довольно просто, но на практике при применении модели RGB не всегда удается точно передать нужный цвет.

Первая проблема связана с технологией изготовления мониторов. Как уже упоминалось, цвет, воспроизводимый монитором, зависит от типа нанесенного на него люминофора. Но разными производителями используются разные типы люминофора. Кроме того, по мере старения монитора меняются качества люминофора и характеристик электронных прожекторов или светодиодов. Другими словами, на разных мониторах цвета могут немного различаться — наверное, все с этим сталкивались.

Вторая проблема имеет уже не технический характер, она проистекает из ограничений самого метода смешения цветов. Дело в том, что с помощью аддитивного синтеза нельзя получить все цвета видимого спектра. Все, что может монитор — это смешивать красный, зеленый и синий. Если обозначить эти цвета на диаграмме точками, то все множество цветов, которые можно получить их смешением, окажутся внутри получившегося треугольника. И площадь его, как мы видим, гораздо меньше, чем диапазон цветов, которые может различать человек.



Загрузка...