sonyps4.ru

Измеритель напряжения и тока. Встраиваемый измеритель тока и напряжения на PIC12F675

Один из самых простых способов измерения тока в электрической цепи - это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев [email protected]
Преимущества:
низкое входное синфазное напряжение;
входной и выходной сигнал имеют общую «землю»;
простота реализации с одним источником питания.
Недостатки:
нагрузка не имеет непосредственной связи с «землей»;
отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
нагрузка заземлена;
обнаруживается короткое замыкание в нагрузке.
Недостатки:
высокое синфазное входное напряжение (зачастую очень высокое);
необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока ».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

Прибор измеряет постоянное напряжение от 0 до 51,1 В с дискретностью 0,1 В и постоянный ток от 0 до 5,11 А с дискретностью 0,01 А Его прототипом послужил измеритель, описанный в , довольно простой по схеме и имеющий неплохие параметры. Основная реализованная в нем идея использовать недорогой микроконтроллер заслуживает внимания. Однако необходимость использовать ОУ, способный работать при однополярном питании при близком к нулю выходном напряжении, а также наличие дополнительного источника питания накладывают некоторые ограничения на его применение.

Цифровой измеритель напряжения и тока

К тому же индикаторы на плате прототипа расположены неудобно, лучше установить их в ряд по горизонтали и сократить размеры передней панели измерителя, приблизив их к габаритам использованных индикаторов. Принципиальная схема измерителя представлена на сайте www.сайт. Поскольку найти применённые в микросхемы 74HC595N (сдвиговые регистры с регистром хранения) не удалось, использованы микросхемы 74HC164N, в которых регистр хранения отсутствует. Также применены индикаторы, обладающие гораздо более высокой яркостью при малом токе, что позволило уменьшить потребляемый измерителем ток до 20 мА и отказаться от дополнительного стабилизатора напряжения +5 В.

Сигнал с датчика тока (резистора R1) поступает на вход GP1 микроконтроллера через инвертирующий усилитель на ОУ DA1. В отличие от (1J, здесь используется двухполярное питание ОУ напряжением ±8 В, поскольку далеко не все ОУ обладают свойством rail to rail и корректно работают при однополярном питании и почти нулевом напряжении на выходе. Двухполярное же питание позволяет легко решить эту проблему, допускает применение ОУ очень многих типов. Поскольку напряжение на выходе ОУ может находиться в интервале от 8 до 8 В. для защиты входа микроконтроллера от перегрузки применена ограничительная цепь R10VD9.

Подстроечным резистором R8 регулируют коэффициент усиления, а подстроечным резистором R11 устанавливают нулевое напряжение на выходе ОУ. Диоды VD1 и VD2 защищают вход ОУ от перегрузки в случае обрыва датчика тока. Благодаря сравнительно малому сопротивлению датчика тока уход результата измерения напряжения при изменении тока нагрузки от нуля до максимального (5.11 А) не превышает 0.06 В. Если измеритель встраивают в источник напряжения отрицательной полярности. датчик тока можно включить перед выходным делителем напряжения его стабилизатор».

При этом падение напряжения на датчике тока будет компенсировано цепью обратной связи стабилизатора. Поскольку ток делителя обычно невелик, на показания амперметра он влияния почти не окажет, к тому же это влияние можно скомпенсировать, подстрочным резистором R11.Питают измеритель выходным напряжением выпрямителя блока питания через преобразователь на транзисторах VT1 и VT2. Это несколько сложнее, чем в , так как требует изготовления импульсного трансформатора, зато нет проблем с получением всех требуемых номиналов напряжения. Преобразователь напряжения представляет собой простейший двухтактный автогенератор. схема которого позаимствована из . Частота преобразования - около 80 кГц.

Благодаря гальванической развязке между входом и выходом преобразователя измеритель можно встроить в стабилизатор напряжения любой полярности. С указанными на схеме транзисторами он работоспособен при входном напряжении от 30 до 44 В. при этом выходные напряжения изменяются приблизительно от 8 до 12 В. Благодаря тому что сопротивления резисторов R5 и R6 выбраны довольно большими, преобразователь не боится замыканий выходов. В таких случаях генерация просто срывается.

Напряжение 5 В для питания цифровой части измерителя получено с помощью интегрального стабилизатора DA2. Стабилизировать напряжения питания ОУ не требуется, поскольку сам он достаточно устойчив к его изменениям. Напряжение пульсаций с частотой преобразования подавляют RC-фильтры на входах микроконтроллера DD1. Если же слишком велики пульсации с частотой 100 Гц, рекомендуется воспользоваться способом их снижения, описанным в .Здесь стоит сказать несколько слов о присущей всем цифровым измерителям нестабильности младшего разряда результата измерения.

Он всегда хаотически изменяется на единицу вокруг истинного значения. Эти флюктуации не являются следствием неисправности прибора, но их нельзя устранить полностью, можно лишь уменьшить, усредняя результаты большого числа измерений. Детали измерителя смонтированы на трёх печатных платах из фольгированного с одной стороны изоляционного материала. Рассчитаны они на установку микросхем в корпусах DIP На одной плате (рис. 2) смонтированы индикаторы, на второй (рис. 3) - цифровые микросхемы и микроконтроллер. Преобразователь, стабилизатор напряжения питания микроконтроллера и усилитель сигнала датчика тока установлены на третьей плате (рис. 4).

Размещение деталей на платах и межплатные соединения показаны на рис. 5. Красными цифрами на нем обозначены номера выводов импульсного трансформатора Т1 у мест их подключения к плате. Сам трансформатор закреплён на ней хомутами из изолированного монтажного провода. Блокировочные конденсаторы С13 и С14 припаяны непосредственно к выводам питания микросхем DD2 и DD3. Как показала практика, измеритель нормально работает и без этих конденсаторов.

Платы микроконтроллера и индикаторов соединены кронштейнами из оцинкованной стали толщиной 0.5 мм. Плата преобразователя и усилителя закреплена двумя винтами М2. Расстояние между платами - около 11 мм. Такой вариант конструкции прибора (рис. 6) занимает меньше места на лицевой панели блока питания, в которую этот прибор должен быть встроен. Вместо ОУ КР140УД708 можно применить, например. КР140УД1408 и множество ОУ других типов Следует отметить, что они могут требовать иных цепей коррекции, чем КР140УД708 Это следует учесть при проектировании печатной платы.

Вместо сдвиговых регистров 74НС164 можно использовать 74НС4015, но придется изменить топологию печатных проводников платы. Диоды КД522Б можно заменить на КД510А. Подстроечные резисторы R8 и R11 - СПЗ19. R9 - импортный. Постоянные конденсаторы также импортные. Резистор R1 (датчик тока) можно изготовить из нихромового провода или применить готовый, как это сделано в (1). Я сделал его из отрезка нихромовой ленты сечением 2,5×0,8 мм и длиной (с учётом залуженных концов) около 25 мм, извлеченной из теплового реле ТРН.

Трансформатор Т1 намотан на ферритовом кольце типоразмера 10x6x3 мм, извлеченном из неисправной КЛЛ. Все обмотки намотаны проводом ПЭВ-2 диаметром 0,18 мм. Обмотка 2-3 содержит 83 витка, обмотки 1-2 и 4-5 - по 13 витков, а обмотка 6-7-8 80 витков с отводом от середины. Если выходное напряжение выпрямителя меньше 30 В, число витков обмотки 2-3 придётся уменьшить из расчета приблизительно 4 витка на вольт. Между собой обмотки 1-2-3 и 4-5 изолированы одним слоем конденсаторной бумаги толщиной 0,1 мм, а от обмотки 6-7-8 - двумя слоями такой бумаги После проверки работоспособности трансформатор пропитан лаком ХВ-784.

Программа микроконтроллера написана в среде MPLAB IDE v8.92 на языке ассемблера MPASM. Предлагаются два её варианта. Файлы первого варианта находятся в папке «Общ. катод» и предназначены для прибора со светодиодными индикаторами с общими катодами разрядов, в том числе теми, что указаны на схеме рис. 1. Файлы второго варианта из папки «Общ. анод» следует использовать при установке в прибор светодиодных индикаторов с общими анодами разрядов. Однако на практике этот вариант программы не испытан. Программирование микроконтроллера было выполнено с помощью программы IC-prog и простого устройства, описанного в (4).

Налаживание измерителя заключается в установке подстроечным резистором R11 нуля на выходе ОУ DA 1 при отсутствии тока в измеряемой цепи. Затем в эту цепь подают ток. близкий к пределу измерения, но меньше его. Контролируя ток образцовым амперметром, подстроечным резистором R8 добиваются равенства показаний образцового и налаживаемого приборов.Подав и контролируя образцовым вольтметром измеряемое напряжение, устанавливают соответствующие показания на индикаторе прибора подстроечным резистором R9. Подробнее о налаживании написано в (1).

При проверке силовых электрических цепей часто возникает необходимость в измерении силы тока. Чтобы измерить величину постоянного тока, как правило, применяют резисторный шунт, включенный последовательно с нагрузкой, напряжение на котором пропорционально току. Однако, если возникнет необходимость в измерении больших токов, то потребуется шунт внушительной мощности, поэтому целесообразнее использовать другие методы измерения.

В связи с этим у меня возникла идея собрать измеритель тока на основе датчика Холла. Его схема представлена на рисунке.

Особенности амперметра:

  • Измерение силы переменного или постоянного тока без электрического контакта с цепью
  • Измерение истинного среднеквадратичного (TrueRMS) значения тока независимо от формы сигнала, а также максимального значения за период (приблизительно 0.5 секунды)
  • Вывод информации на символьный LCD дисплей
  • Два режима измерения (до 10А и до 50А)

Схема работает следующим образом. Провод с током располагается внутри ферритового кольца, создавая при этом магнитное поле, величина которого прямо пропорциональна силе тока. Датчик Холла, расположенный в воздушном зазоре сердечника, преобразует величину индукции поля в напряжение, и это напряжение подается на операционные усилители. ОУ необходимы, чтобы привести уровни напряжения с датчика к диапазону входных напряжений АЦП. Полученные данные обрабатываются микроконтроллером и выводятся на LCD дисплей.

Предварительный расчет схемы

В качестве сердечника использовано кольцо R20*10*7 из материала N87. Датчик Холла - SS494B.

С помощью надфиля в кольце протачивается зазор такой толщины, чтобы там поместился датчик, то есть около 2 мм. На данном этапе уже можно примерно оценить чувствительность датчика к току и максимально возможный измеряемый ток.

Эквивалентная проницаемость сердечника с зазором приблизительно равна отношению длины магнитной линии к величине зазора:

Тогда, подставив это значение в формулу расчета индукции в сердечнике и умножив это все на чувствительность датчика, найдем зависимость выходного напряжения датчика от силы тока:

Здесь K B - чувствительность датчика к индукции магнитного поля, выраженная в В/Тл (берется из даташита).

Например, в моем случае l з = 2 мм = 0,002 м, K B = 5 мВ/Гаусс = 50 В/Тл, откуда получаем:

Реальная чувствительность к току оказалась равной 0,03В/А , то есть расчет получается весьма точным.

Согласно даташиту на SS494B, максимальная измеряемая датчиком индукция равна 420 Гауссов, следовательно максимальный измеряемый ток равен:

Фото датчика в зазоре:

Расчет цепей ОУ

В амперметре имеется два канала: до 10 А (23 вывод МК), и до 50 А (24 вывод МК). Переключением режимов занимается мультиплексор АЦП.

В качестве опорного напряжения АЦП выбран внутренний ИОН, поэтому сигнал необходимо привести к диапазону 0 - 2.56 В. При измерении токов величиной ±10 А напряжение датчика составляет 2,5±0,3 В, следовательно нужно усилить и сместить его так, чтобы нулевая точка находилась точно посередине диапазона АЦП. Для этого используется ОУ IC2:A, включенный как неинвертирующий усилитель. Напряжение на его выходе описывается уравнением:

Здесь под R2 подразумеваются последовательно соединенные R2 и P2, а под R3 соответственно R3 и P3, чтобы выражение не выглядело слишком громоздким. Чтобы найти сопротивления резисторов запишем уравнение дважды (для токов -10А и +10А):

Напряжения нам известны:

Задав R4 равным 20 кОм, получаем систему из двух уравнений, где переменными являются R2 и R3. Решение системы можно легко найти с помощью математических пакетов, например MathCAD (файл расчетов приложен к статье).

Аналогичным образом рассчитывается и вторая цепь, состоящая из IC3:A и IC3:B. В ней сигнал с датчика сначала проходит через повторитель IC3:A, а затем попадает на делитель на резисторах R5, R6, P5. После ослабления сигнала, он дополнительно смещается операционным усилителем IC3:B.

Описание работы микроконтроллера

Микроконтроллер ATmega8A выполняет обработку сигналов с ОУ и вывод результатов на дисплей. Он тактируется от внутреннего генератора на 8 МГц. Фьюзы стандартные, за исключением CKSEL. В PonyProg они выставляются так:

АЦП сконфигурирован на работу с частотой 125 кГц (коэффициент деления равен 64). По окончании преобразования АЦП вызывается обработчик прерывания. В нем запоминается максимальное значение тока, а также суммируются квадраты токов последовательных выборок. Как только число выборок доходит до 5000, микроконтроллер вычисляет RMS значение тока и выводит данные на дисплей. Затем переменные обнуляются и все происходит с начала. На схеме указан дисплей WH0802A, но можно использовать любой другой дисплей с контроллером HD44780.

Прошивка микроконтроллера, проект для CodeVision AVR и файл симуляции в Proteus приложены к статье.

Настройка схемы

Настройка устройства сводится к регулировке подстроечных резисторов. Сначала нужно настроить контрастность дисплея, вращая P1.

Затем, переключившись кнопкой S1 в режим до 10А, настраиваем P2 и P3. Выкручиваем один из резисторов максимально вправо и, вращая второй резистор, добиваемся нулевых показаний прибора. Пробуем измерить ток, величина которого точно известна, при этом показания амперметра должны получиться ниже, чем есть на самом деле. Подкручиваем оба резистора немного влево, так чтобы сохранилась нулевая точка, и опять измеряем ток. На этот раз показания должны стать чуть больше. Продолжаем это до тех пор, пока не добьемся точного отображения величины тока.

Теперь переключимся в режим до 50А и настроим его. Резистором P4 выставляем ноль на дисплее. Измеряем какой-либо ток и смотрим на показания. Если амперметр завышает их, то крутим P5 влево если занижает, то крутим вправо. Опять выставляем ноль, проверяем показания при заданном токе и так далее.

Фото устройства

Измерение постоянного тока:



Из-за недостаточно точной калибровки, значения немного завышаются.

Измерение переменного тока частотой 50 Гц, в качестве нагрузки используется утюг:

В теории среднеквадратичный ток синусоиды равняется 0.707 от максимального, но, судя по показаниям, этот коэффициент равен 0.742. После проверки формы напряжения в сети, выяснилось что оно лишь напоминает синусоиду. Учитывая это, такие показания прибора выглядят вполне достоверными.

У прибора все же есть недостаток. На выходе датчика постоянно присутствуют шумы. Проходя через ОУ, они попадают на микроконтроллер, в результате чего невозможно добиться идеального нуля (вместо нуля отображается примерно 30-40 мА RMS). Это можно исправить, увеличив емкость C7, но тогда ухудшатся частотные характеристики: на высоких частотах показания будут занижаться.

Использованные источники

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATmega8A

1 DIP-28 В блокнот
IC2, IC3 Операционный усилитель

MCP6002

2 SOIC-8 В блокнот
IC4 Линейный регулятор

L78L05

1 В блокнот
IC5 Датчик Холла SS494B 1 В блокнот
C1-C7 Конденсатор 100 нФ 9 К10-17б В блокнот
R1, R3, R6, R9 Резистор

10 кОм

4 SMD 1206 В блокнот
R2 Резистор

12 кОм

1 SMD 1206 В блокнот
R4 Резистор

20 кОм

1 SMD 1206 В блокнот
R5 Резистор

6.8 кОм

1 SMD 1206 В блокнот
R7, R8 Резистор

100 кОм

2 SMD 1206 В блокнот
P1 Подстроечный резистор 10 кОм 1 3362P В блокнот
P2 Подстроечный резистор 4.7 кОм 1 3362P

Измерение, контроль и регулирование тока - распространенные задачи в различных приложениях электроники. Предлагаемая вниманию читателей статья представляет собой обзор схемотехнических решений и компонентов, применяемых для этих целей.

Один из способов измерения тока в электрической цепи - это измерение падения напряжения на токоизмерительном резисторе (шунте) известного сопротивления, включенном последовательно с нагрузкой. Чтобы сопротивление шунта оказывало минимальное воздействие на режим работы нагрузки, оно выбирается минимально возможной величины, что предполагает последующее усиление сигнала.

В таблице 1 перечислены производители электронных компонентов, выпускающие как специализированные изделия, предназначенные для контроля тока, так и микросхемы усилителей, подходящих для этой цели.

Таблица 1. Фирмы-производители микросхем-мониторов тока

Изготовитель
Analog Devices Inc.
Integration Associates Inc.
International Rectifier
Ixys Corp.
Linear Technology Corp.
Maxim Integrated Products
National Semiconductor
Semtech Corp.
Texas Instruments Inc.
Zetex Semiconductor

Специализированные микросхемы для контроля (измерения) тока производителями названы Low-Side Current Sense Monitor (Amplifier) и High-Side Current Sense Monitor (Amplifier). Буквальный перевод этих терминов на русский язык дает такие же загадочные названия, как «южный мост» в материнской плате компьютера.

Фирма Maxim определяет High-side current sensing как измерение тока по падению напряжения на резисторе, включенном между источником питания и нагрузкой, а Low-side current sensing - как измерение тока по падению напряжения на резисторе, включенном между нагрузкой и общим проводом («землей»).

Воспользуемся для дальнейшего описания понятиями измерения тока в положительном и отрицательном полюсах нагрузки предполагая, что шина питания имеет положительный потенциал относительно общей шины, что справедливо для подавляющего большинства современных электронных схем. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки

Преимущества:

  • низкое входное синфазное напряжение;
  • входной и выходной сигнал имеют общую «землю»;
  • простота реализации с одним источником питания.

Недостатки:

  • нагрузка не имеет непосредственной связи с «землей»;
  • отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
  • возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит множество операционных усилителей, предназначенных для работы с однополярным питанием с входным синфазным напряжением, включающим потенциал общей шины, а также многие из инструментальных усилителей. По этой причине специализированные микросхемы Low-Side Sense Monitor (Amplifier) практически отсутствуют. Схемы измерения тока с применением операционного и инструментального усилителей приведены на рис. 1 и 2 соответственно. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется либо двухполярное питание усилителя, либо смещение уровня выходного сигнала подключением вывода REF инструментального усилителя к источнику опорного напряжения.

Рис. 1. Схема измерения тока в отрицательном полюсе с операционным усилителем

Рис. 2. Схема измерения тока в отрицательном полюсе с измерительным усилителем

Измерение тока в положительном полюсе нагрузки

  • обнаруживается короткое замыкание в нагрузке.
  • Недостатки:

    • высокое синфазное входное напряжение (зачастую очень высокое);
    • необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).

    Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

    В схеме на рис. 3 можно применить любой из подходящих по допустимому напряжению питания и точностным характеристикам операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

    Рис. 3. Схема измерения тока в положительном полюсе с операционным усилителем

    Так называемые Over-The-Top Rail-To-Rail Input и Output Amplifier (LT1494, LT1636, LT1637, LT1672, LT1782, LT1783, LT1784 от Linear Technology) работоспособны при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 4, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В.

    Рис. 4. Схема измерения тока в положительном полюсе с Over-The-Top операционным усилителем

    Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. На рис. 5 показана схема с применением LTC6800. Напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя (5,5 В).

    Рис. 5. Схема измерения тока в положительном полюсе с инструментальным усилителем LTC6800

    Дифференциальные усилители, подходящие для построения схем мониторов тока в положительном полюсе, перечислены в таблице 2. Некоторые из них имеют очень широкий диапазон входного синфазного напряжения, распространяющийся и в область отрицательных значений, что позволяет организовать при необходимости измерение тока и в нагрузке, подключенной к источнику питания отрицательной полярности. Рекордные показатели у LT1990, имеющего диапазон входного синфазного напряжения от –37 до 250 В при однополярном питании и ±250 В при двухполярном. Схема с его использованием изображена на рис. 6. Микросхемам AD629 и INA117 требуется двухполярное питание, при этом диапазон входного синфазного напряжения составляет ±270 В и ±200 В.

    Рис. 6. Схема измерения тока в положительном полюсе с дифференциальным усилителем LT1990

    Таблица 2. Дифференциальные усилители

    Интеграция практически всех необходимых компонентов в один кристалл привела к созданию специализированных микросхем мониторов тока. Как правило, эти микросхемы не обеспечивают точности, достижимой с использованием прецизионных усилителей. Однако для подавляющего большинства применений, особенно если требуется только контроль тока, а не измерение его точного значения, заявляемой производителями точности вполне достаточно.

    По выходному сигналу микросхемы можно разделить на три группы: с токовым выходом, потенциальным выходом и ШИМ-выходом.

    Характеристики микросхем c токовым выходом приведены в таблице 3. На рис. 7 показана схема с применением INA139, в которой кроме токового шунта требуется единственный внешний компонент - резистор R OUT . В схеме на рис. 8 с применением LTC6101HV, кроме того, необходим резистор R IN , включаемый в цепь встроенного источника тока.

    Рис. 7. Монитор тока в положительном полюсе с токовым выходом INA139

    Рис. 8. Монитор тока в положительном полюсе с токовым выходом LTC6101HV

    Таблица 3. Микросхемы мониторов тока с токовым выходом

    Поскольку выходное сопротивление схем достигает нескольких десятков килоом, схемы последующей обработки сигнала должны иметь высокое входное сопротивление.

    Особенность трехвыводных микросхем ZXCT1008 и ZXCT1009 от Zetex - протекание собственного тока потребления микросхемы через резистор R OUT , что, естественно, вносит дополнительную погрешность. Однако ввиду чрезвычайно малого собственного потребления эта погрешность незначительна, особенно в конце шкалы, и вполне приемлема. На рис. 9 показано применение ZXCT1009 в схеме зарядного устройства для Li-Ion аккумулятора.

    Рис. 9. Схема управления зарядным устройством

    В таблице 4 приведены характеристики микросхем-мониторов тока с потенциальным выходом. От мониторов тока с токовым выходом они отличаются тем, что содержат внутренний резистор R OUT , а часть из них имеет выходной усилитель, позволяющий уменьшить выходное сопротивление до единиц и даже долей ома. В качестве примера внутренней организации на рис. 10 показан монитор тока MAX4372.

    Рис. 10. Монитор тока в положительном полюсе с потенциальным выходом MAX4372

    Таблица 4. Микросхемы мониторов тока с потенциальным выходом

    При необходимости контролировать ток, который изменяет направление в зависимости от режима работы схемы, например, ток, протекающий через реверсируемый электродвигатель, или ток заряда–разряда аккумуляторной батареи, используются два монитора тока. Схема для последнего случая приведена на рис. 11. Здесь каждый монитор контролирует ток своего направления. Альтернативное решение - использование сдвоенного монитора тока MAX4377 или двунаправленного (Bidirectional) монитора тока, схема применения которого изображена на рис. 12. Опорное напряжение устанавливает уровень, относительно которого изменяется выходное напряжение. Выходной сигнал схемы увеличивается с ростом тока положительного направления и, соответственно, уменьшается с ростом тока отрицательного направления. Аналогичный результат можно получить с использованием дифференциальных и инструментальных усилителей, подключив вывод REF к источнику опорного напряжения, как показано на рис. 6.

    Рис. 11. Схема контроля тока заряда–разряда аккумулятора

    Рис. 12. Схема двунаправленного монитора тока

    Мониторы тока можно использовать и при напряжении источника питания, превышающем максимальное входное синфазное напряжение, как описано в документации . В последнем документе показано использование микросхемы MAX4172 с источником питания напряжением 100–250 В.

    Микросхемы - мониторы тока с минимальным значением входного синфазного напряжения, равным нулю, можно использовать для контроля тока в отрицательном полюсе нагрузки, а INA193–INA198 - и для контроля тока в нагрузке, включенной в цепь источника отрицательного напряжения до –16 В.

    Некоторые из мониторов тока обеспечивают дополнительные функции. Переключаемое усиление позволяет менять коэффициент передачи монитора «на лету», увеличивая точность измерения в начале шкалы. Наличие вывода отключения дает возможность экономить энергию, когда нет необходимости измерять ток. Встроенный источник опорного напряжения служит для задания либо выходного уровня двунаправленного монитора, либо порога срабатывания встроенных или внешних компараторов.

    Микросхема MAX4210 позволяет одновременно контролировать как ток, так и потребляемую нагрузкой мощность, а MAX4211 содержит еще и два компаратора для организации пороговых устройств.

    Монитор тока IA2410 может работать и как датчик температуры с переключением из режима монитора тока в режим контроля температуры подачей комбинации импульсов на вход SHDN.

    Мониторы тока с ШИМ-выходом

    Широтно-импульсная модуляция выходного сигнала имеет преимущества при сопряжении монитора тока с микропроцессором. Характеристики микросхем с ШИМ приведены в таблице 5, а пример применения монитора тока IR2175 для контроля тока фазы электродвигателя - на рис. 13.

    Рис. 13. Схема контроля тока с IR2175

    Таблица 5. Мониторы тока с ШИМ-выходом

    Следует упомянуть и правила выбора токоизмерительных шунтов. Естественно, что чем меньше сопротивление шунта, тем большее влияние оказывает сопротивление подводящих проводов. Для точных измерений используются четырехвыводные резисторы.

    Если особых требований к точности не предъявляется, шунт может быть выполнен в виде дорожки на печатной плате. При этом отклонение сопротивления от расчетного значения в серии изделий может достигать ±5%, кроме того, температурный коэффициент сопротивления меди достаточно велик. Последнее обстоятельство в некоторых случаях не является критичным. Например, микросхемы ZXCT1008–ZXCT1010 имеют отрицательный температурный дрейф коэффициента передачи в положительном диапазоне температур, что в некоторой степени компенсирует положительный температурный коэффициент сопротивления меди.

    Измерение переменного тока

    Linear Technology производит микросхемы прецизионных преобразователей среднеквадратичного значения переменного напряжения в постоянное - LTC1966 и LTC1967, характеристики которых приведены в таблице 6. Коэффициент передачи микросхем определяется формулой

    На рис. 14 изображена схема включения LTC1966 для измерения переменного тока с использованием трансформатора тока.

    Рис. 14. Схема измерения переменного тока с LTC1966

    Таблица 6. Микросхемы для измерения переменного тока

    Большое количество практических схем контроля и регулирования тока применения микросхем-мониторов тока приведено в документах .

    Существуют и другие микросхемы датчиков тока, основанные на использовании эффекта Холла и «гигантского» магниторезистивного эффекта. Они применяются для бесконтактного измерения тока. Тем не менее, рассмотрение их характеристик и применения выходит за рамки данной статьи.

    Литература

    1. AN-39. Current Measurement Applications Handbook. Zetex Semiconductor.
    2. AN-3331. High-Side Current-Sense Amplifier Operates at High Voltage. Maxim Integrated Products.
    3. AN-105. Current Sense Circuit Collection. Linear Technology.
    4. AN-746. High-Side Current-Sense Measurement: Circuits and Principles. Maxim Integrated Products.

    Измерение силы тока (сокращено - измерение тока) полезное умение, которое не раз пригодится в жизни. Знать величину силы тока надо, когда следует определить потребляемую мощность. Для измерения тока применяется прибор под названием Амперметр.

    Есть ток переменный и ток постоянный , следовательно, для их измерения применяются различные измерительные приборы. Ток всегда обозначается буквой I, а его сила измеряется в Амперах и обозначается буквой А. Например, I=2 А показывает, что сила тока в проверяемой цепи равняется 2 Амперам.

    Рассмотрим подробно, как маркируются различные измерительные приборы для измерения разных видов токов.

    • На измерительном приборе для измерения постоянного тока перед буквой А наносится символ "-".
    • На измерительном приборе для измерения переменного тока, в том же месте наносится символ "~".
    • ~А прибор для измерения переменного тока.
    • -А прибор для измерения постоянного тока.

    Вот фотография амперметра, предназначенного для измерения постоянного тока .

    Соответственно закону, сила тока протекающего в замкнутой цепи, в любой его точке равна одной и той же величине. В итоге, чтобы измерить ток, надо разъединить цепь на любом участке удобным для подсоединения измерительного прибора.

    Следует помнить, что величина напряжения присутствующего в электрической цепи , не оказывает никакого влияния на измерение тока . Источником тока может быть, как и бытовая электросеть на 220 В, так и батарейка на 1,5 В и т.д.

    Собираясь измерять силу тока в цепи обратите тщательное внимание, какой ток протекает в цепи, постоянный или переменный. Возьмите соответствующий измерительный прибор и если не знаете предполагаемую силу тока в цепи, поставьте переключатель измерения силы тока в максимальное положение.

    Рассмотрим подробно как измерить силу тока электроприбором.

    Для безопасности измерения потребляемого тока электроприборами сделаем самодельный удлинитель с двумя розетками. После сборки получим удлинитель очень похожий на стандартный магазинный удлинитель.

    Но если разобрать и сравнить между собой, самодельный и магазинный удлинитель, то во внутренней структуре четко увидим отличия. Выводы внутри розеток самодельного удлинителя соединены последовательно, а в магазином соединены параллельно.

    На фотографии прекрасно видно, что верхние выводы соединены между собой проводом желтого цвета, а на нижние клеммы розеток подается сетевое напряжение.

    Теперь приступаем к измерению тока, для этого вставляем в одну из розеток вилку электроприбора, а в другую розетку, щупы амперметры. Перед измерением тока , не забываем прочитанную информацию про то, как надо правильно и безопасно измерять ток.

    Теперь рассмотрим как правильно интерпретировать показания стрелочного амперметра. При измерении потребляемого тока прибора стрелка амперметра остановилась на делении 50, переключатель был установлен на максимальный предел измерения в 3 Ампера. Шкала моего амперметра имеет 100 делений. Значит, легко определить измеренную силу тока по формуле (3/100) Х 50=1,5 Ампера.

    Формула расчета мощности прибора по потребляемой силе тока.

    Обладая данными о размере силы тока потребляемым любым электроприбором (телевизор, холодильник, утюг, сварка и т.д.), можно с легкостью определить, какая у этого электроприбора потребляемая мощность. В мире существует физическая закономерность, которому всегда подчиняется электричество. Первооткрыватели этой закономерности Эмиль Ленц и Джеймс Джоуль и в честь них, она теперь называется Закон Джоуля - Ленца.

    • I - сила тока, измеряемая в Амперах (А);
    • U - напряжение, измеряемое в Вольтах (В);
    • P - мощность, измеряемая в Ваттах (Вт).

    Проведем один из расчетов тока.

    Измерил ток потребления холодильника и он равняется 7 Амперам. Напряжение в сети равно 220 В. Следовательно, потребляемая мощность холодильника равняется 220 В Х 7 А=1540 Вт.



    Загрузка...