sonyps4.ru

Графический способ решения онлайн. Графический метод решения задач

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

Назначение сервиса . С помощью данного сервиса можно в онлайн режиме решить задачу линейного программирования геометрическим методом, а также получить решение двойственной задачи (оценить оптимальность использования ресурсов). Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите количество строк (количество ограничений).

Количество ограничений 1 2 3 4 5 6 7 8 9 10
Если количество переменных больше двух, необходимо систему привести к СЗЛП (см. пример и пример №2). Если ограничение двойное, например, 1 ≤ x 1 ≤ 4 , то оно разбивается на два: x 1 ≥ 1 , x 1 ≤ 4 (т.е. количество строк увеличивается на 1).
Построить область допустимого решения (ОДР) можно также с помощью этого сервиса .

Вместе с этим калькулятором также используют следующие:
Симплексный метод решения ЗЛП

Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Вычисление пределов

Решение задачи линейного программирования графическим методом включает следующие этапы :

  1. На плоскости X 1 0X 2 строят прямые.
  2. Определяются полуплоскости.
  3. Определяют многоугольник решений;
  4. Строят вектор N(c 1 ,c 2), который указывает направление целевой функции;
  5. Передвигают прямую целевую функцию c 1 x 2 + c 2 x 2 = 0 в направлении вектора N до крайней точки многоугольника решений.
  6. Вычисляют координаты точки и значение целевой функции в этой точке.
При этом могут возникать следующие ситуации:

Пример . Компания изготавливает два вида продукции - П1 и П2. Для производства продукции используются два вида сырья - С1 и С2. Оптовые цены единицы продукции равна: 5 д.е. для П1 и 4 д.е. для П2. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице.
Таблица - Расход сырья на производство продукции

Установлены ограничения на спрос продукции: ежедневный объем производства продукции П2 не должен превышать ежедневный объем производства продукции П1 не более чем на 1 тонну; максимальный ежедневный объем производства П2 не должен превышать 2 т.
Требуется определить:
Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?
  1. Сформулировать математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования графическим способом (для двух переменных).
Решение.
Сформулируем математическую модель задачи линейного программирования.
x 1 - производство продукции П1, ед.
x 2 - производство продукции П2, ед.
x 1 , x 2 ≥ 0

Ограничения по ресурсам
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6

Ограничения по спросу
x 1 +1 ≥ x 2
x 2 ≤ 2

Целевая функция
5x 1 + 4x 2 → max

Тогда получаем следующую ЗЛП:
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6
x 2 - x 1 ≤ 1
x 2 ≤ 2
x 1 , x 2 ≥ 0
5x 1 + 4x 2 → max

Назначение сервиса . Онлайн-калькулятор предназначен для решения задач линейного программирования симплексным методом путем перехода к КЗЛП и СЗЛП . При этом задача на минимум целевой функции сводятся к задаче на поиск максимума через преобразование целевой функции F*(X) = -F(X) . Также имеется возможность составить двойственную задачу .

Решение происходит в три этапа:

  1. Переход к КЗЛП. Любая ЗЛП вида ax ≤ b , ax ≥ b , ax = b (F(X) → extr) сводится к виду ax = b , F(X) → max ;
  2. Переход к СЗЛП. КЗЛП вида ax = b сводится к виду ax ≤ b , F(X) → max ;
  3. Решение симплексным методом;

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10

Переход от задачи минимизации целевой функции к задаче максимизации

Задача минимизации целевой функции F(X) легко может быть сведена к задаче максимизации функции F*(X) при тех же ограничениях путем введения функции: F*(X) = -F(X) . Обе задачи имеют одно и то же решение X*, и при этом min(F(X)) = -max(F*(X)) .
Проиллюстрируем этот факт графически:
F(x) → min
F(x) → max
Для оптимизации функции цели используем следующие понятия и методы.
Опорный план – план с определёнными через свободные базисными переменными.
Базисный план – опорный план с нулевыми базисными переменными.
Оптимальный план – базисный план, удовлетворяющий оптимальной функции цели (ФЦ).

Ведущий (разрешающий) элемент – коэффициент свободной неизвестной, которая становится базисной, а сам коэффициент преобразуется в единицу.
Направляющая строка – строка ведущего элемента, в которой расположена с единичным коэффициентом базисная неизвестная, исключаемая при преобразовании (строка с минимальным предельным коэффициентом, см. далее).
Направляющий столбец – столбец ведущего элемента, свободная неизвестная которого переводится в базисную (столбец с максимальной выгодой, см. далее).

Переменные x 1 , …, x m , входящие с единичными коэффициентами только в одно уравнение системы, с нулевыми - в остальные, называются базисными или зависимыми . В канонической системе каждому уравнению соответствует ровно одна базисная переменная. Переход осуществляется с помощью метода Гаусса-Жордана . Основная идея этого метода состоит в сведении системы m уравнений с n неизвестными к каноническому виду при помощи элементарных операций над строками.
Остальные n-m переменных (x m +1 ,…, x n) называются небазисными или независимыми переменными .

Базисное решение называется допустимым базисным решением , если значения входящих в него базисных переменных x j ≥0, что эквивалентно условию неотрицательности b j ≥0.
Допустимое базисное решение является угловой точкой допустимого множества S задачи линейного программирования и называется иногда опорным планом .
Если среди неотрицательных чисел b j есть равные нулю, то допустимое базисное решение называется вырожденным (вырожденной угловой точкой) и соответствующая задача линейного программирования называется вырожденной .

Пример №1 . Свести задачу линейного программирования к стандартной ЗЛП.
F(X) = x 1 + 2x 2 - 2x 3 → min при ограничениях:
4x 1 + 3x 2 - x 3 ≤10
- 2x 2 + 5x 3 ≥3
x 1 + 2x 3 =9
Для приведения ЗЛП к канонической форме необходимо:
1. Поменять знак у целевой функции. Сведем задачу F(X) → min к задаче F(X) → max. Для этого умножаем F(X) на (-1). В первом неравенстве смысла (≤) вводим базисную переменную x 4 ; во втором неравенстве смысла (≥) вводим базисную переменную x 5 со знаком минус.
4x 1 + 3x 2 -1x 3 + 1x 4 + 0x 5 = 10
0x 1 -2x 2 + 5x 3 + 0x 4 -1x 5 = 3
1x 1 + 0x 2 + 2x 3 + 0x 4 + 0x 5 = 9
F(X) = - x 1 - 2x 2 + 2x 3
Переход к СЗЛП .
Расширенная матрица системы ограничений-равенств данной задачи:

4 3 -1 1 0 10
0 -2 5 0 -1 3
1 0 2 0 0 9

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x 4 .
2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-2. Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 2 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(0 3):-2 3-(-2 3):-2 -1-(5 3):-2 1-(0 3):-2 0-(-1 3):-2 10-(3 3):-2
0: -2 -2: -2 5: -2 0: -2 -1: -2 3: -2
1-(0 0):-2 0-(-2 0):-2 2-(5 0):-2 0-(0 0):-2 0-(-1 0):-2 9-(3 0):-2

Получаем новую матрицу:
4 0 6 1 / 2 1 -1 1 / 2 14 1 / 2
0 1 -2 1 / 2 0 1 / 2 -1 1 / 2
1 0 2 0 0 9

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ=2. Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 3 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(1 6 1 / 2):2 0-(0 6 1 / 2):2 6 1 / 2 -(2 6 1 / 2):2 1-(0 6 1 / 2):2 -1 1 / 2 -(0 6 1 / 2):2 14 1 / 2 -(9 6 1 / 2):2
0-(1 -2 1 / 2):2 1-(0 -2 1 / 2):2 -2 1 / 2 -(2 -2 1 / 2):2 0-(0 -2 1 / 2):2 1 / 2 -(0 -2 1 / 2):2 -1 1 / 2 -(9 -2 1 / 2):2
1: 2 0: 2 2: 2 0: 2 0: 2 9: 2

Получаем новую матрицу:
3 / 4 0 0 1 -1 1 / 2 -14 3 / 4
1 1 / 4 1 0 0 1 / 2 9 3 / 4
1 / 2 0 1 0 0 4 1 / 2

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,2,3).
Соответствующие уравнения имеют вид:
3 / 4 x 1 + x 4 - 1 1 / 2 x 5 = -14 3 / 4
1 1 / 4 x 1 + x 2 + 1 / 2 x 5 = 9 3 / 4
1 / 2 x 1 + x 3 = 4 1 / 2
Выразим базисные переменные через остальные:
x 4 = - 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4
x 2 = - 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4
x 3 = - 1 / 2 x 1 +4 1 / 2
Подставим их в целевую функцию:
F(X) = - x 1 - 2(- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4) + 2(- 1 / 2 x 1 +4 1 / 2)
или

Система неравенств:
- 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4 ≥ 0
- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4 ≥ 0
- 1 / 2 x 1 +4 1 / 2 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 4 x 1 - 1 1 / 2 x 5 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 5 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 5 -10 1 / 2 → max
Упростим систему.
3 / 4 x 1 - 1 1 / 2 x 2 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 2 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 2 -10 1 / 2 → max

Пример №2 . Найдите сначала графическим методом, а затем симплекс-методом решение задачи
F(X) = x 1 + x 2 - x 3 + x 5 +15 → max (min) при ограничениях:
-3x 1 + x 2 + x 3 =3
4x 1 + 2x 2 - x 4 =12
2x 1 - x 2 + x 5 =2
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0, x 5 ≥ 0

На этом уроке будем знакомиться с графическим методом решения задач линейного программирования , то есть, таких задач, в которых требуется найти такое решения системы линейных уравнений и (или) неравенств (системы ограничений), при котором функция цели - линейная функция - принимает оптимальное значение.

Ввиду того, что наглядность графического решения достигается лишь на плоскости, мы можем познакомиться с графическим представлением задачи только в двумерном пространстве. Это представление пригодно для системы ограничений-неравенств с двумя переменными или для систем уравнений, в которых число переменных на 2 превышает число уравнений, то есть число свободных переменных равно двум.

Поэтому графический метод имеет такие узкие рамки применения, что о нём как об особом методе решения задач линейного программирования говорить нельзя.

Однако для выработки наглядных представлений о решениях задач линейного программирования графический метод представляет определённый интерес. Кроме того, он позволяет геометрически подтвердить справедливость теорем линейного программирования .

Теоретические основы графического метода

Итак, задача линейного программирования. Требуется найти неотрицательные значения переменных и , удовлетворяющих системе неравенств

при которых линейная форма принимает оптимальное значение.

Пример 3.

Пример 4. Решить графическим методом задачу линейного программирования, в которой требуется найти минимум функции при ограничениях

Продолжаем решать задачи графическим методом вместе

До сих пор полученные выводы были основаны на том, что множество решений задачи линейного программирования сконфигурировано так, что оптимальное решение конечно и единственно. Теперь рассмотрим примеры, когда это условие нарушается. В этих примерах многоугольник решений строится так, как показано в предыдущих примерах, остановимся же на признаках, которые отличают эти исключительные примеры.

Пример 5. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

Решение. На рисунке изображены: неограниченная многогранная область решений данной системы ограничений, исходная линия уровня (чёрного цвета), вектор (бордового цвета), указывающий направление движения исходной линии уровня для нахождения максимума целевой функции.

Легко заметить, что функция F может неограниченно возрастать при заданной системе ограничений, поэтому можно условно записать, что .

Пример 6. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях


f = –х 1 + 5х 2 ¾> min ;

4х 1+ 3х 2 £ 24,

х 1– 10х 2 £ 0,

8х 1– 3х 2 ³ 0,

5х 1+ 3х 2 ³ 15,

х 1³0, х 2³ 0. (1)

Совокупность переменных хj , удовлетворяющих условию (1), называется областью допустимых решений. Допустимое решение, обращающее целевую функцию в min или max , называется оптимальным. Для его определения необходимо построить область допустимых решений (область определения). Так как в условии задачи заданы две переменные, то область допустимых решений находится на плоскости х 10х 2. Каждое неравенство (1) определяет полуплоскость, а равенство – прямую. Для построения полуплоскости необходимо найти ее границу и установить, с какой стороны от нее лежит искомая полуплоскость. Перепишем условия (1) в виде равенств (2) и пронумеруем их.

4х 1+ 3х 2 = 24 (I ),
х 1– 10х 2 = 0 (II ),
8х 1– 3х 2 = 0 (III ),
5х 1+ 3х 2 = 15 (IV ). (2)

Введем систему координат х 10х 2 и построим последовательно эти прямые – границы полуплоскостей. Для построения прямой на плоскости необходимо определить любые две точки, лежащие на этой прямой. Если прямая пересекает оси 0х 1и 0х 2, то можно найти координаты точек ее пересечения с осями координат. Определим координаты пересечения прямой (I ) с осью 0х 1: х 1=0; Þ 3х 2= 24; Þ х 2= 8. Соответственно определим координаты второй точки пересечения первой прямой с осью 0х 2: х 2=0; Þ 4х 1= 24; Þ х 1= 6. Следовательно, точки пересечения прямой (I ) с осями координат равны (0,8) и (6,0). Построим эту прямую (рис. 1).

Определим полуплоскость. Для этого подставим в первое неравенство (1) координаты любой точки, не лежащей на данной прямой, например (0,0). Тогда из первого условия следует: 4×0+3×0 £24, значит, неравенство справедливо, откуда следует, что полуплоскость лежит с той стороны прямой, где находится точка с координатами (0,0).


Аналогичным образом строятся и другие полуплоскости. Необходимо учесть, что прямые (II) и (III) проходят через начало координат, т.е. точку (0,0). Координаты второй точки желательно брать пропорционально коэффициентам в уравнении искомой прямой. Например, для второй прямой – точки (0,0) и (10,1), а для третьей – (0,0) и (3,8). После построения всех полуплоскостей область допустимых решений примет следующий вид (рис. 3):



Целевая функция f определяет на плоскости прямую, которая должна проходить через точку или сторону многоугольника и иметь наименьшее значение. Построим направляющий вектор для этой прямой. Данный вектор перпендикулярен искомой прямой, и его направление всегда определяет максимум целевой функции. Противоположное направление вектора определяет минимум. Обозначим этот вектор через . Он проходит через точку (0,0) и (–1,5). Координаты второй точки берут из коэффициентов целевой функции и с их помощью определяют направление вектора. Перпендикулярно ему построим прямую –х 1+ 5х 2=0. Как было сказано выше, вектор всегда показывает направление возрастания значения целевой функции (max ) , противоположный ему вектор –– направление убывания значения целевой функции (min ). Перемещаем прямую –х 1+5х 2=0 по области определения параллельно самой себе в направлении min . Целевая функция f достигнет своего минимального значения в точке С (рис. 4).


Оптимальному решению задачи (1) соответствует точка С , которая лежит на пересечении прямых (I ) и (II ):

4х 1+ 3х 2= 24;

х 1– 10х 2= 0.

Для решения данной системы уравнений умножить второе уравнение на 4 и сложить соответственно по элементам с 1-м уравнением:

4х 1+ 3х 2 = 24;

4х 1– 40х 2 = 0.

Вычтем из первого уравнения второе, получим: 43х2= 24 Þ х 2= 0,56.

Подставив найденное значение х 2во второе уравнение, получим:

х 1= 10х х 1=5,6. Подставив координаты точки С в целевую функцию, получим следующий результат:

f min = – 5,6 + 5×0,56 = – 2,8.

Окончательный результат задачи запишем в следующем виде:

х 1= 5,6, х 2= 0,56;f min = – 2,8.

Решение данного примера на ПЭВМ осуществляется программным комплексом «Блок-3». С его помощью производятся ввод, решение и вывод результативной информации на внешний носитель. Простота и доступность комплекса позволит без труда освоить его и применять на практике.

Задача № 1.1.2.

f = 2х 1+ 3х 2 ¾> max;

2х 1+ 3х 2 £ 12,

2х 1– 5х 2 £ 0,

7х 1– 2х2³ 0,

х 1, х 2³ 0. (3)

Определения и построение области допустимых решений аналогичны заданию 1.1.1. Окончательный вид области допустимых решений представлен на рис. 5 многоугольником АВС (точка А совпадает с точкой 0).

Очевидно, что прямая, определяющая целевую функцию, совпадает с прямой, образующей сторону многоугольника ВС . Отсюда следует, что решением данной ЭММ являются точки, лежащие на стороне ВС много-

угольника АВС . Для записи решения ЭММ необходимо найти координату x 1B – точки В и x 1C – точки С . Определив их, мы сможем найти отрезок, лежащий на оси 0x 1(рис. 6).


Координаты точки В – x1B определяются в результате пересечения прямых 2х 1+ 3х 2 = 12 и 7х 1– 2х 2 = 0. Для этого необходимо решить систему уравнений:

2х 1+ 3х 2= 12 ´ 2 Þ 4х 1+ 6х 2= 24;

7х 1– 2х 2= 0 ´ 3 Þ 21х 1– 6х2= 0.

Сложив два последних уравнения, получим: 25х 1=24, х 1=0,96. Из этого следует, что x 1B =0,96. Координата точки С x 1C определяется в результате пересечения прямых 2х 1+ 3х 2=12 и 2х 1–5х 2=0. Решим систему уравнений:

2х 1+ 3х 2= 12 ´ 5 Þ 10х 1+ 15х 2= 60;

2х 1– 5х 2= 0 ´ 3 Þ 6х 1 – 15х 2= 0.

Сложив два последних уравнения, получим: 16х 1= 60, х 1= 3,75, откуда следует, что x 1C = 3,75.

Значение целевой функции для данной ЭММ равно 12 (так как уравнение прямой, на которой определен отрезок ВС – 2х 1+3х 2= 12).

Таким образом, ответ данной задачи:

x 1Î[x 1B ; x 1C ] Þ x 1Î;

2х 1+ 3х 2=12 Þ 3х 2= 12 – 2х х 2= (12 – 2х 1)/3.

Полный ответ данного примера запишется в следующем виде:

x 1Î; x 2= (12 – 2х 1)/3; f max = 12.

Задача № 1.1.3.

f = 2х 1+ 3х 2 ¾> max;

2х 1+ 3х 2 ³ 12,

2х 1– 5х 2 £ 0,

7х 1– 2х 2³ 0,

х 1, х 2 ³0. (4)

Используя схему построения области допустимых решений задач 1.1.1–1.1.2, получим следующий график (рис. 7):


f = 2х 1+ 3х 2 ¾> max ;

х 1+ х2 £ 2,

2х 1+ 3х 2³ 12,

2х 1– 5х 2£ 0,

7х 1– 2х 2³ 0,

х 1, х 2³ 0. (5)

Используя график задачи 1.1.3 и достроив первую полуплоскость х 1+х2£ 2, получим область определения, показанную на рис. 8.


Из графика (рис. 8) видно, что для данной ЭММ области допустимых решений нет. Ответ: нет области допустимых решений.

Задача № 1.1.5.

f = – х 1+ 5х 2 ¾> min;

10х 1+ 3х 2£ 30,

10х 1+ 5х 2³ 50,

2х 1– 6х 2£ 0,

х 1, х 2³ 0. (6)

Область определения ЭММ (6) представлена на рис. 9. Из анализа графика следует, что областью допустимых решений будет являться точка А с координатами (0,10) (10х 1+ 5х 2= 50, х 1= 0, 5х 2= 50, х 2=10). В случае, когда решением ЭММ является единственная точка, целевую функцию можно не строить.

Ответ: x 1= 0; x 2=10; fmin = 0+5×10 = 50.


Таким образом, при решении задач ЭММ ЛП возможны следующие ситуации:

– задача имеет одно оптимальное решение;

– задача имеет бесконечное число оптимальных решений;

– задача не имеет оптимального решения;

– задача не имеет области допустимых решений.

На практике ЭММ ЛП не имеет решений только в том случае, если некорректна постановка задачи.

Как показывает опыт разработки ЭММ, основная сложность состоит в описании экономико-технологических процессов в модели и выборе критерия оптимизации. Отсюда следует, что необходимо точно определить нормативные параметры. Это в свою очередь требует поставленного учета и анализа на исследуемом объекте. В то же время особое значение в составлении модели приобретает уровень подготовки специалиста. От его умения выявить основные звенья технологического процесса, определить этапы решения задачи и сформулировать цели исследования будет зависеть и качество решения данной проблемы.

Задача № 1.1.6.

Предприятие может организовать производство своей продукции двумя способами. При первом способе предприятие за месяц выпускает C 1 тыс. изделий, при втором – C 2 тыс. изделий. Расход производственных, людских ресурсов, амортизация оборудования и ограничения ресурсов, приведены ниже в таблице.

Сколько месяцев должно работать предприятие, каким способом организовать производство, чтобы обеспечить максимальный выпуск продукции.

1) Решить графическим способом;

2) Решить на базе комплекса «Блок-3»;

3) Симплекс-методом.

Задача. Решить графически задачу линейного программирования, определив экстремальное значение целевой функции:

при ограничениях

Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Построим уравнение 3x 1 +x 2 = 9 по двум точкам .
Для нахождения первой точки приравниваем x 1 = 0. Находим x 2 = 9. Для нахождения второй точки приравниваем x 2 = 0. Находим x 1 = 3. Соединяем точку (0;9) с (3;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 3 . 0 + 1 . 0 - 9 ≤ 0, т.е. 3x 1 +x 2 - 9≥ 0 в полуплоскости выше прямой.
Построим уравнение x 1 +2x 2 = 8 по двум точкам .
Для нахождения первой точки приравниваем x 1 = 0. Находим x 2 = 4. Для нахождения второй точки приравниваем x 2 = 0. Находим x 1 = 8. Соединяем точку (0;4) с (8;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 . 0 + 2 . 0 - 8 ≤ 0, т.е. x 1 +2x 2 - 8≥ 0 в полуплоскости выше прямой.
Построим уравнение x 1 +x 2 = 8 по двум точкам .
Для нахождения первой точки приравниваем x 1 = 0. Находим x 2 = 8. Для нахождения второй точки приравниваем x 2 = 0. Находим x 1 = 8. Соединяем точку (0;8) с (8;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 . 0 + 1 . 0 - 8 ≤ 0, т.е. x 1 +x 2 - 8≤ 0 в полуплоскости ниже прямой.

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.
Обозначим границы области многоугольника решений.

Проверить правильность построения графиков функций можно с помощью калькулятора

Рассмотрим целевую функцию задачи F = 4x 1 +6x 2 → min.
Построим прямую, отвечающую значению функции F = 0: F = 4x 1 +6x 2 = 0. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление минимизации F(X). Начало вектора - точка (0; 0), конец - точка (4; 6). Будем двигать эту прямую параллельным образом. Поскольку нас интересует минимальное решение, поэтому двигаем прямую до первого касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Прямая F(x) = 4x 1 +6x 2 пересекает область в точке B. Так как точка B получена в результате пересечения прямых (1) и (2) , то ее координаты удовлетворяют уравнениям этих прямых:
3x 1 +x 2 =9
x 1 +2x 2 =8

Решив систему уравнений, получим: x 1 = 2, x 2 = 3
Откуда найдем минимальное значение целевой функции:
F(X) = 4*2 + 6*3 = 26



Загрузка...