sonyps4.ru

Аналитическое и имитационное моделирование. Имитационное моделирование

СРАВНЕНИЕ АНАЛИТИЧЕСКОГО И ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ДЛЯ КЛАССИЧЕСКОЙ ТРЕХФАЗНОЙ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

Третьякова Анастасия Алексеевна 1 , Золотов Александр Александрович 1
1 Московский государственный технический университет имени Н.Э. Баумана


Аннотация
В статье рассмотрены различные подходы к моделированию систем обработки информации и управления. Произведен анализ классической трехфазной системы массового облуживания, которая включает в себе канал, процессоры и диски. Проведено множество экспериментов, и разработана имитационная модель данной системы для проверки и подтверждения результатов аналитического моделирования. Рассчитана погрешность между аналитическим и имитационным моделированием.

COMPARISON OF ANALYTICAL AND SIMULATION MODELING FOR THE CLASSICAL THREE-PHASE QUEUING SYSTEM

Tretyakova Anastasia Alekseevna 1 , Zolotov Alexander Alexandrovich 1
1 Bauman Moscow State University


Abstract
In the article there are various approaches to the modeling of information processing and control systems. The analysis of the classical three-phase queuing system which includes a channel, processors and disks were done. A set of experiments were done and a simulation model of this system were developed to verify and validate the results of analytical modeling. The error between analytical and simulation was calculated.

Библиографическая ссылка на статью:
Третьякова А.А., Золотов А.А. Сравнение аналитического и имитационного моделирования для классической трехфазной системы массового обслуживания // Современные научные исследования и инновации. 2016. № 12 [Электронный ресурс]..03.2019).

В настоящее время компьютер является незаменимой частью деятельности человека. Кроме персонального использования, компьютеры активно применяются для организации ЛВС (Локальной вычислительной сети). Правильное построение ЛВС, отвечающей стандартам безопасности, дает возможность получать доступ к необходимой информации, обеспечивает защиту от несанкционированного доступа к данным.
Для построения надежной, работоспособной ЛВС необходимо отталкиваться от требований к сети. Каждая ЛВС выполняет функции СОИ – системы обработки информации. Перед выбором оборудования сети важно оценить потоки поступающих заявок, загрузку рабочих станций, каналов передачи и др. характеристики системы. Для оценки производят моделирование проектируемой, будущей системы с учетом числа рабочих станций, количества процессоров, времени формирования запроса с рабочей станции и тд.
Модель не является объектом в полной мере отражающим все свойства и характеристики будущей системы. При моделировании учитываются основные входные параметры, которые влияют на исследуемые свойства системы.
Однако моделирование является важным шагом на этапе разработки системы, поскольку обладает рядом преимуществ: экономичностью по сравнению с сразу реализованной системой без этапа моделирования. Такая система может оказаться сильно недоработанной и потребовать новых экономических вложений;
не требует построения полной системы для исследования ее характеристик;
позволяет моделировать поведение системы в критичных для нее состояниях;
позволяет выявлять новые закономерности в более короткие сроки. По способу представления свойств объекта в модели делятся на следующие типы: аналитические, алгоритмические, имитационные (рис. 1).

Рис. 1. Классификация математических моделей по способу представления свойств объекта

Аналитические математические модели используют математические выражения для получения выходных параметров как функций от входных параметров, алгоритмические модели – алгоритм или несколько алгоритмов, которые определяют функционирование модели. Имитационная модель предназначена для исследования возможных путей изменения модели при различных значениях параметров. Аналитическое моделирование. Аналитическая модель в определяется как математическое описание структуры и процесса функционирования системы, а также методика определения показателей ее эффективности. Такая модель позволяет быстро и с высокой точностью характеризовать поведение системы.

При аналитическом моделировании устанавливаются зависимости между входными и выходными параметрами системы. Эти зависимости описываются с помощью различных уравнений (алгебраические, дифференциальные, интегральные и др.). Аналитическое моделирование используется для учета не очень большого числа параметров. Задачи, которые требуют большего числа параметров, решают с помощью методов имитационного моделирования. Аналитические модели активно используются для описания СМО (Систем массового обслуживания). СМО называется система, которая служит для обслуживания потока заявок.
Рассмотрим СОИ, представленную на рисунке 2.

Рис. 2. Формализованная схема СОИ, содержащая ПЭВМ, канал и сервер

В схеме используются следующие обозначения:
ОА Дi - обслуживающий аппарат, имитирующий дообработку на i-той рабочей станции сети запроса от этой станции к серверу после обработки запроса на сервере;
ОА ф i - обслуживающий аппарат, имитирующий формирование запроса от i-той рабочей станции к серверу; (i = 1… N );
Б К - буфер, имитирующий очередь запросов к каналу;
ОА К - обслуживающий аппарат, имитирующий задержку при передаче данных через канал;
Б п - буфер, имитирующий очередь запросов к процессорам;
ОА п - обслуживающие аппараты, имитирующие работу процессоров.
Б д i - буфер, имитирующий очередь запросов к i-му диску;
ОА д i - обслуживающий аппарат, имитирующий работу i-го диска.
Р – вероятность обращения запроса к ЦП после обработки на диске. Обслуживание
заявок во всех ОА подчиняется экспоненциальному закону.
Данная СОИ обслуживает заявки, поступающие от рабочих станций к серверу. Эти заявки формируются через определенные временные промежутки. Заявки поступают на обслуживающие аппараты. Так же в системе предусмотрена задержка при передаче заявки по каналу, возможность дообработки заявки.
Аналитическая модель этой СОИ может быть построена с помощью использования следующих формул:

1. (1)

где - среднее значение суммарной интенсивности фонового потока запросов, выходящих из ОА, имитирующих работу рабочих станций, в канал;
- среднее количество проходов запроса по тракту процессор – диски за время одного цикла его обработки в системе;
- среднее значение времени обработки запроса в канале передачи данных;
- среднее значение времени обработки запроса в ЦП сервера;
- среднее значение времени обработки запроса в диске сервера;
N - количество рабочих станций;
- вероятность обращения к i-му диску сервера.
К1 принимает значения в диапазоне 0.9…0.999995, по умолчанию 0,995.

2. (2.1)

(2.2)

(2.3)

где - среднее время пребывания запроса в канале;

Среднее время пребывания запроса в процессоре;
- среднее время пребывания запроса в дисках;
С - число процессоров сервера.

3. ,(3)

где - интенсивность фонового потока после очередной итерации.

4. После вычислений по формулам (1-3) сравниваем . Если , то переходим к пункту 5, иначе продолжаем вычисление по формулам (4.1-4.2). - может принимать значения в диапазоне от 0,000001 до 0,9. По умолчанию 0,05.

где К2 принимает значения в диапазоне 10…100000, по умолчанию 100.

Переход на пункт 2 .
5. Определение выходных результатов аналитической модели для производится по формулам (2). С помощью формул ниже определяются остальные выходные характеристики СОИ.

(5.5)

Среднее время цикла системы;
- среднее время формирования запроса;

Реализация аналитической модели СОИ. Программная реализация аналитической модели с использованием формул (1-5) написана на языке программирования С#. Форма взаимодействия с пользователем представлена на рисунке 3.

Рис. 3. Интерфейс программы “Аналитическая модель СОИ”

В табл. 1 представлены входные и выходные параметры модели СОИ.

Таблица 1. Параметры модели СОИ

Входные

Выходные

Среднее время передачи через канал в прямом направлении
Среднее время передачи через канал в обратном направлении
Количество процессоров (С)
Среднее время цикла системы
Количество дисков (m); Среднее время реакции системы
Коэффициент К1 (по умолчанию – 0,995) Количество итераций
Коэффициент К2 (по умолчанию – 100)
Дельта ∆ (по умолчанию – 0,05)
Количество знаков после запятой (по умолчанию -3)

Проведение экспериментов на модели СОИ. С помощью аналитической модели была промоделирована работа СОИ. Эксперименты были проведены для различного количества рабочих станций, процессоров, дисков, времен формирования, обработки и дообработки заявки, для систем без дообработки и с дообработкой заявки. Исходные данные и результаты моделирования для некоторых экспериментов приведены в табл. 2.

Таблица 2. Аналитическое моделирование СОИ

Номер эксперимента 1 2 3 4

Исходные данные

Количество рабочих станций (N) 25 25 25 20
Среднее время дообработки запроса на РС (То) 0 0 50 50
Среднее время формирования запроса на РС (Тр) 100 10 100 70
Среднее время передачи через канал в прямом направлении (tк1) 5 5 3 2
Среднее время передачи через канал в обратном направлении (tк2) 5 5 3 2
Количество процессоров (С) 1 1 1 2
Среднее время обработки запроса на процессоре (tпр) 10 10 10 10
Количество дисков (m) 1 2 1 3
Среднее время обработки запроса на диске (tдi) 10 20 10 25
Вероятность обращения запроса к ЦП после обработке на диске (P) 0 0 0,05 0,07

Результаты моделирования

0,337 0,034 0,507 0,496
0,337 0,034 0,338 0,289
Среднее количество работающих РС 8,418 0,852 12,664 9,914
0,842 0,852 0,507 0,33
0,842 0,852 0,844 0,444
0,842 0,852 0,844 0,74
- 0,852 - 0,74
- - - 0,74
Среднее время цикла системы 296,987 293,316 296,103 242,073
Среднее время реакции систем 196,987 283,316 196,103 172,073
Начальная интенсивность фонового потока 0,096 0,096 0,096 0,105
Конечная интенсивность фонового потока 0,085 0,086 0,085 0,082
Количество итераций 53 41 60 111

Также с помощью аналитической модели установлено, что при различных К1, К2, ∆ результаты отличаются не значительно, кроме показателя – количество итераций. При использовании приведенного выше подхода к аналитическому моделированию целесообразно использовать значения по умолчанию для К1, К2, ∆, кроме случаев, когда необходима высокая точность вычислений.
Имитационное моделирование. Имитационное моделирование – это метод, который позволяет строить и получать модели тех ситуаций, которые бы происходили в действительности. Моделирование можно проводить на определенном временном интервале. С помощью данной особенности имитационных моделей можно наблюдать, как система ведет себя в течение времени. Это бывает полезно, когда система сложная, и ученым или исследователям не понятно, как будет вести себя система через некоторый квант времени (через час, день и т.д.).
Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.
Широко использующимся языком моделирование на сегодняшний день является GPSS. Язык GPSS зарекомендовал себя, как хороших язык имитационного моделирования для систем массового обслуживания и систем, которые могут быть формализованы в качестве систем массового обслуживания.
Модель на языке GPSS представляет собой последовательность операторов. Каждому оператору свойственно свое (особое) поведение
В интерпретаторах языка GPSS событийный метод обработки. В модели может быть сразу несколько транзактов. Транзакт – это абстрактный объект, который перемещается между статическими объектами (операторами языка GPSS), воспроизводя определенное поведение реального объекта. Интерпретатор обслуживает транзакты в определенном порядке (FIFO, LIFO), тем самым имитируя продвижения транзактов по имитационной модели.
Рассмотренная выше система относится к классу систем массового облуживания. Соответственно, можно составить имитационную модель данной системы и проверить результаты аналитического моделирования.
В модели задается количество рабочих станций, время обработки запроса на рабочей станции, время дообработки запроса, время передачи через канал, количество процессоров, время обработки заявки на процессоре, количество дисков, время обработки на диске. Сравним результаты аналитического и имитационного моделирования. Результаты имитационного моделирования, а также входные данные приведены в таблице 3.

Таблица 3. Результаты имитационного моделирования.

Из приведенных результатов видно, что имитационно моделирование достаточно хорошо согласуется с аналитическим моделированием. Разница в результатах моделирования не превышает 7-8%, что вполне приемлемо для инженерных расчетов.

Заключение. В статье были рассмотрены 2 подхода к анализу систем массового обслуживания: аналитический метод и имитационный метод. При проведении нескольких экспериментов получились хорошо согласующиеся между собой результаты. Погрешность между двумя данными методами составляет не более 7-8%, что является хорошим показателем для инженерных расчетов. Поэтому, для анализа систем массового обслуживания на практике используют комбинацию двух данных методов. Сначала используют аналитическое моделирование, затем проверяют результаты на имитационных моделях. Комбинация двух данных методов позволяет получить приемлемый результат, а также сократить количество ошибок и неверных решений. – (Дата обращения: 01.12.2016) Количество просмотров публикации: Please wait

Существует два подхода к построению модели: «аналитическое» и «имитационное» моделирование.

Аналитическое моделирование основано на косвенном описании моделируемого объекта с помощью набора математических формул. При этом предполагается использование математической модели реального объекта в форме алгебраических, дифференциальных, интегральных, и других уравнений, связывающих выходные переменные с входными. Вводится система ограничений. Обычно предполагается наличие однозначной вычислительной процедуры получения точного решения уравнений. Язык аналитического описания содержит следующие основные группы семантических элементов: критерий, неизвестные, данные, математические операции, ограничения. Наиболее существенно то, что аналитическая модель, вообще говоря, не является структурно подобной объекту моделирования. Под структурным подобием тут понимается однозначное соответствие элементов и связей модели элементам и связям моделируемого объекта. К аналитическим моделям относятся модели, построенные на основе аппарата математического программирования, корреляционного, регрессионного анализа.

Аналитическая модель всегда представляет собой формальную конструкцию, которую можно проанализировать и разрешить математическими средствами. Так если используется аппарат математического программирования, то модель состоит из целевой функции и системы ограничений на переменные. Целевая функция, как правило, выражает ту характеристику системы, которую требуется вычислить или оптимизировать. В частности это может быть производительность системы. Переменные выражают варьируемые технические характеристики системы, ограничения – их допустимые предельные значения. Процесс (в определённом выше смысле), происходящий на объекте, может и не иметь прямого аналога в аналитической модели. Аналитические модели являются эффективным средством для решения задач оптимизации или вычисления характеристик различного рода систем, в том числе информационных, производственных и др. Однако в ряде практических задач применение аналитических моделей затруднительно из-за их большой размерности.

Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, что каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При этом описываются законы функционирования каждого элемента объекта и связи между ними. Работа с имитационной моделью заключается в проведении имитационного эксперимента. Процесс, протекающий в модели в ходе эксперимента, подобен процессу в реальном объекте. Поэтому исследование объекта по его имитационной модели сводится к изучению характеристик процесса, протекающего в ходе эксперимента.

Для формального представления реальной системы при имитационном моделировании обычно используется схема с дискретными событиями. При этом процесс функционирования системы во времени отождествляется с последовательностью событий, возникающих в системе в соответствии с закономерностями её функционирования. В формальное понятие «события» вкладывается конкретное смысловое содержание, определяемое целями моделирования.

Ценным качеством имитации является возможность управлять масштабом времени. Динамический процесс в имитационной модели протекает в так называемом системном времени. Системное время имитирует реальное время. При этом пересчет системного времени в модели можно выполнять двумя способами: первый заключается в «движении» по времени с некоторым постоянным шагом t, второй – в движении по времени от события к событию. При этом допускается, что в промежутках времени между событиями изменений в модели не происходит.

Основное назначение имитационного моделирования состоит в следующем:

    выделить основные, существенные переменные, оценить степень влияния их изменения на исследуемые параметры системы, а также определить «узкие» места, т.е. технологические, организационные или управленческие, наиболее существенно влияющие на показатель функционирования системы;

    изучить воздействие различных организационных, управленческих и технико-экономических изменений на показатель функционирования системы;

    оценить различные варианты технических решений, стратегий управления при поиске оптимальной структуры системы.

По способу описания динамики поведения может быть избрана соответствующая схема построения имитационной модели. Модель может быть описана посредством событий, работ (активностей), процессов и транзактов.

Событие представляет собой причину мгновенного изменения состояния некоторого элемента системы или состояния системы в целом. Обычно события подразделяют на события следования, т.е. события, которые управляют инициализацией процессов или отдельных работ внутри процесса, и события изменения состояний системы или ее элементов.

На основе событий целесообразно строить модель с целью изучения причинно-следственных связей, присущих системе.

Если исследователя интересует не только логика смены состояний, но и временные характеристики ее работы, механизм событий служит основой для представления в модели работ, процессов, транзактов.

Работа – это единичное действие системы по обработке входных данных (информационные данные, материальные ресурсы). Каждая из работ характеризуется временем выполнения и потребляемыми ресурсами. С помощью моделей, описыва5емых в терминах работ, могут решаться задачи по оценке качества распределения ресурсов системы, ее производительности, надежности. Процесс – логически связанный набор работ.

Статическими характеристиками процесса (работы) являются длительность, результат, потребляемые ресурсы, условия запуска (активизации), условия остановки (прерывания). Динамической характеристикой процесса (работы) является его состояние (например, активен или находится в системном ожидании). При описании системы в терминах работ и процессов используются оба вида событий.

Транзакт – это некоторое сообщение (заявка на обслуживание), которое поступает извне на вход системы и подлежит обработке. Прохождение тразакта по системе можно в некоторых случаях рассматривать как последовательную активизацию процессов, реализующих его обработку (обслуживание заявки).

При имитационном моделировании используемая математическая модель воспроизводит логику («алгоритм») функционирования исследуемой системы во времени при различных сочетаниях значений параметров системы и внешней среды. Это наблюдение поведения модели системы под влиянием входных воздействий.

Очевидно, в одних случаях более предпочтительным является аналитическое моделирование, в других – имитационное (или сочетания того и другого). Выбор использования одного из подходов зависит от целей моделирования и от класса моделируемого явления.

Традиционно математические модели разделяют на аналитические и имитационные модели. Аналитические модели представляют собой уравнения или системы уравнений, записанные в виде алгебраических, интегральных, дифференциальных, конечно-разностных и иных соотношений и логических условий. Они записаны и решены в буквенном виде. Отсюда и происходит их название. Аналитическая модель, как правило, статическая. Аналитическое представление подходит лишь для очень простых и сильно идеализированных задач и объектов, которые, как правило, имеют мало общего с реальной (сложной) действительностью, но обладают высокой общностью. Данный тип моделей обычно применяют для описания фундаментальных свойств объектов, так как фундамент прост по своей сути. Сложные объекты редко удаётся описать аналитически.

Альтернативой аналитическим моделям являются имитационные модели (динамические). Основное отличие имитационных моделей от аналитических состоит в том, что вместо аналитического описания взаимосвязей между входами и выходами исследуемой системы строят алгоритм, отображающий последовательность развития процессов внутри исследуемого объекта, а затем «проигрывают» поведение объекта на

компьютере. К имитационным моделям прибегают тогда, когда объект моделирования настолько сложен, что адекватно описать его поведение математическими уравнениями невозможно или затруднительно. Имитационное моделирование позволяет разлагать большую модель на части (объекты, «кусочки»), которыми можно оперировать по отдельности, создавая другие, более простые или, наоборот, более сложные модели.

Таким образом, основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач, так как имитационную модель можно постепенно усложнять, при этом результативность модели не падает.

При имитационном моделировании воспроизводится алгоритм функционирования системы во времени – поведение системы, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы. Имитационные модели позволяют достаточно просто учитывать

такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и другие, которые часто создают трудности при аналитических исследованиях. Имитационное моделирование тяготеет к объектно-ориентированному представлению, которое естественным образом описывает объекты, их состояние, поведение, а также взаимодействие

между ними.

Имитационная модель в отличие от аналитической представляет собой не законченную систему уравнений, а развернутую схему с детально описанной структурой и поведением изучаемого объекта. Для имитационного моделирования характерно воспроизведение явлений, описываемых моделью, с сохранением их логической структуры, последовательности чередования во времени, взаимосвязей между параметрами и переменными исследуемой системы.

В аналитических моделях можно использовать широкий арсенал математических методов, что часто позволяет найти оптимальное решение и иногда провести анализ чувствительности. Однако, к сожалению, аналитические решения не всегда существуют, а существующие не всегда просто найти.

Что касается имитационных моделей, то оптимальность решения не гарантирована, и даже более того – часто трудно получить решение, хотя бы в какой-то степени близкое к оптимальному. Иногда требуется провести много испытаний имитационной модели, чтобы получить приемлемую достоверность «добротности» какого-либо решения.

Однако с помощью имитационного моделирования можно получить такие данные, которые с помощью аналитических моделей получить очень сложно или совсем невозможно, например, определить влияние изменчивости параметров модели, поведение модели до достижения ею установившегося состояния и т.п. См. рис 2.

Рис. 3. Модели поддержки принятия решений

В аналитических моделях (в частности, математического программирования) значения переменных решений являются выходом модели. Выходным результатом процесса оптимизации модели будут значения переменных решений, которые максимизируют (или минимизируют) целевую функцию. В имитационных моделях значения

переменных решений являются входом модели – выходным результатом процесса имитации модели будет значение целевой функции, соответствующее данным входным значениям переменных.

Еще в недалеком прошлом имитационные модели считались методом «второго сорта», которые применялись только тогда, когда было невозможно применять аналитические. И действительно, если уже построена аналитическая модель, то обычно с помощью того или иного метода оптимизации можно найти оптимальное детерминированное решение. Однако на сегодняшний день многие аналитические модели (в частно-

сти, модели математического программирования) имеют ограниченное применение на практике. В том случае, когда аналитические модели невозможно применять, аналитики применяют имитационные модели. Имитационные модели считаются одними из наиболее перспективных при решении задач управления экономическими объектами. В общем случае, для сложных проблем, где время и динамика важны, имитационное мо-

дели считаются одним из самых популярных и полезных методов количественного анализа :

1 . Аналитические модели часто трудны для формализации и построения, а иногда их вообще невозможно построить. Любая аналитическая модель имеет свои «затрудняющие» факторы, которые зависят от специфики данной модели.

2. Аналитические модели обычно дают среднестатистические или стационарные (долговременные) решения. На практике часто важно именно нестационарное поведение системы или ее характеристики на коротком временном интервале, что не дает возможности получить «средние» значения.

3. Для имитационного моделирования можно использовать широкий круг программного обеспечения специально разработанных для создания имитационных моделей.

Как аналитические, так и имитационные модели можно использовать для решения задач, включающих случайные события. При этом часто аналитические модели предпочтительнее имитационных по следующим причинам:

Ø Имитационное моделирование требует проведения большого числа испытаний, чтобы получить хорошую оценку значения целевой функции для каждого отдельного решения.

Ø С помощью аналитической модели можно получить оптимальное решение.

Ø Решение задачи с помощью имитационного моделирования требует оценить большое количество возможных альтернативных решений.

К достоинствам имитационного моделирования по сравнению с аналитическими моделями можно отнести:

1)Возможность многократного измерения интересующих нас параметров мо-

2)Возможность исследования сложных сценариев поведения системы.

В таблице приведен перечень наиболее существенных отличительных характеристик имитационных и аналитических моделей, проходящих через все три стадии процесса моделирования, а именно формализацию, моделирование и интерпретацию результатов моделирования.

Табл.1.Сравнительные характеристики имитационных и аналитических моделей

ЗАКЛЮЧЕНИЕ

Еще в недалеком прошлом имитационные модели считались методом «второго сорта», которые применялись только тогда, когда было невозможно применять аналитические. И действительно, если уже построена аналитическая модель, то обычно с помощью того или иного метода оптимизации можно найти оптимальное детерминированное решение.

В настоящее время имитационное моделирование – наиболее эффективный метод исследования систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

Во многих случаях имитационные модели строятся не вместо аналитических, а параллельно с ними, поскольку они относительно просты для создания и позволяют исследовать такие параметры реальных систем, которые невозможно отобразить в аналитических моделях. Комбинированное использование аналитических и имитационных методов позволяет сочетать достоинства обоих подходов. При построении комбинированных (аналитико-имитационных) моделей производится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели.

Такой подход дает возможность охватить качественно новые классы систем, которые не могут быть исследованы с использованием аналитического или имитационного моделирования в отдельности.

Литература

1. Борщев А. В. Практическое агентное моделирование и его место в арсенале аналитика // www.anylogic.com


Имитационное моделирование используется в тех случаях, когда др. способы невозможны.

К имитационным моделям прибегают тогда, когда объект моделирования настолько сложен, что адекватно описать его поведение математическими уравнениями невозможно или затруднительно.

Им. моделирование позволяет разлагать большие модели на части, которые можно моделировать по отдельности, создав др. более сложные модели.

Основные различия аналитических и имитационных моделей

Ан. модели – ур-я или системы ур-й, записанные в виде алгебраич., интегральн., конечно-разностных, диф. и др. соотношений и лог. условий.

Им. модели – вместо аналитического описания взаимосвязей между входами и выходами исследуемой системы строят алгоритм, отображение, последовательность развития процессов внутри исследуемого объекта, а затем «проигрывают» поведение объекта на ПК.

Им. модель в отличие от аналитической представляют не законченную систему уравнений, а развернутую схему с детально описанной структурой и поведением изучаемого объекта.

Ан. модели Им. модели
Виды моделирования по отношению ко времени динамическое/статическое динамическое
Форма записи модели ур-я, системы ур-й алгоритмы функционир. об.
Формализация и построение модели трудны более легки
Способы решения модели алгоритмы оптимизации эвристический анализ, эксперимен-ый анализ
Кол-во испытаний для решения одно много
Решения точное значение вероятностные хар-ки
Нахождение оптимального решения в случае построения модели гарантировано не гарантировано
Исследование сложности системы затруднено возможно
Применимость на практике ограниченная не ограниченная
Степень близости модели к изучаемому объекту сильно упрощена макс. приближена
Класс изуч. объектов сужен расширен

Особенности имитационных моделей:

1) при создании имитационной модели законы функционирования м.б. неизвестны (достаточно знать алгоритмы функционирования частей системы и связи между ними)

2) в имитационной модели связи между параметрами и харка-ми системы задаются, а значение исследуемых характеристик определяется в ходе имитационного эксперимента на ЭВМ.

Условия применения имитационных моделей – широкий класс систем практически любой сложности.

Достоинства им. моделирования:

1)Часто единственный метод исследования сложных систем

2)Им. модель дает возможность исследовать сложные системы на различных уровнях детализации.

3)Появляется возможность исследования динамики взаимодействия элементов системы



4)Имеется возможность оценки характеристик системы в нужный момент времени.

5)Существует достаточно много инструментальных средств

Недостатки им. моделирования:

1) Дороговизна

2)Меньшая степень общности результатов, не позволяет выявлять закономерности функционирования

3)Не существует надежных методов оценки адекватности

Составные части им. модели:

Компоненты – составные части, которые при соответствующем объединении образуют систему.

Параметры – определенные условия, в которых функционирует система. (не изменяются в процессе моделирования)

Переменные:

1)Экзогенные – входные переменные, порождаются вне системы или являются результатом воздействия внешних причин.

2)Эндогенные – переменные, возникающие в системе (состояния, выходы)

Функциональные зависимости – зависимости, которые описывают взаимодействие между переменными, а также компонентами системы.(детерминированные, стохастические)

Ограничения – пределы изменения значений переменных (искусственные, вводятся разработчиком или естественные, определяются законами среды)

Целевые функции – точки отображения целей или задач системы и необходимых правил оценки их выполнения. (цели сохранения и приобретения)

Метод имитационного моделирования заключается в имитации программными средствами процесса функционирования системы по известным алгоритмам, лог. и аналит. зависимостям, формализующим внешние воздействия, элементы системы и связи между ними.

Согласно этому признаку модели делятся на два обширных класса:

  • абстрактные (мысленные) модели;
  • материальные модели.


Рис. 1.1.

Нередко в практике моделирования присутствуют смешанные, абстрактно-материальные модели.

Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.

Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:

  • символические;
  • математические.

Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса , графики, диаграммы и т. п.

Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.

Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.

Математическое моделирование - главная цель и основное содержание изучаемой дисциплины.

Математические модели могут быть:

  • аналитическими;
  • имитационными;
  • смешанными (аналитико-имитационными).

Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.

Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.

Имитационное моделирование . Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.

Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.

Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.

В чем заключается отличие имитационных и аналитических моделей?

В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.

В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.

Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием .

Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы, и для которых, возможно, используют аналитические модели, а для остальных подпроцессов строят имитационные модели.

Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство - модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.

Нередко создаются материально-абстрактные модели . Та часть операции, которая не поддается математическому описанию, моделируется материально, остальная - абстрактно. Таковы, например, командно-штабные учения, когда работа штабов представляет собой натурный эксперимент, а действия войск отображаются в документах.

Классификация по рассмотренному признаку - способу реализации модели - показана на рис. 1.2 .


Рис. 1.2.

1.3. Этапы моделирования

Математическое моделирование как, впрочем, и любое другое, считается искусством и наукой. Известный специалист в области имитационного моделирования Роберт Шеннон так назвал свою широко известную в научном и инженерном мире книгу: " Имитационное моделирование - искусство и наука". Поэтому в инженерной практике нет формализованной инструкции, как создавать модели. И, тем не менее, анализ приемов, которые используют разработчики моделей, позволяет усмотреть достаточно прозрачную этапность моделирования.

Первый этап : уяснение целей моделирования. Вообще-то это главный этап любой деятельности. Цель существенным образом определяет содержание остальных этапов моделирования. Заметим, что различие между простой системой и сложной порождается не столько их сущностью, но и целями, которые ставит исследователь.

Обычно целями моделирования являются:

  • прогноз поведения объекта при новых режимах, сочетаниях факторов и т. п.;
  • подбор сочетания и значений факторов, обеспечивающих оптимальное значение показателей эффективности процесса;
  • анализ чувствительности системы на изменение тех или иных факторов;
  • проверка различного рода гипотез о характеристиках случайных параметров исследуемого процесса;
  • определение функциональных связей между поведением ("реакцией") системы и влияющими факторами, что может способствовать прогнозу поведения или анализу чувствительности;
  • уяснение сущности, лучшее понимание объекта исследования, а также формирование первых навыков для эксплуатации моделируемой или действующей системы.

Второй этап : построение концептуальной модели. Концептуальная модель (от лат. conception ) - модель на уровне определяющего замысла, который формируется при изучении моделируемого объекта. На этом этапе исследуется объект , устанавливаются необходимые упрощения и аппроксимации. Выявляются существенные аспекты, исключаются второстепенные. Устанавливаются единицы измерения и диапазоны изменения переменных модели. Если возможно, то концептуальная модель представляется в виде известных и хорошо разработанных систем: массового обслуживания, управления, авторегулирования, разного рода автоматов и т. д. Концептуальная модель полностью подводит итог изучению проектной документации или экспериментальному обследованию моделируемого объекта.

Результатом второго этапа является обобщенная схема модели, полностью подготовленная для математического описания - построения математической модели.

Третий этап : выбор языка программирования или моделирования, разработка алгоритма и программы модели. Модель может быть аналитической или имитационной, или их сочетанием. В случае аналитической модели исследователь должен владеть методами решения.

В истории математики (а это, впрочем, и есть история математического моделирования) есть много примеров тому, когда необходимость моделирования разного рода процессов приводила к новым открытиям. Например, необходимость моделирования движения привела к открытию и разработке дифференциального исчисления (Лейбниц и Ньютон) и соответствующих методов решения. Проблемы аналитического моделирования остойчивости кораблей привели академика Крылова А. Н. к созданию теории приближенных вычислений и аналоговой вычислительной машины.

Результатом третьего этапа моделирования является программа , составленная на наиболее удобном для моделирования и исследования языке - универсальном или специальном.

Четвертый этап : планирование эксперимента. Математическая модель является объектом эксперимента. Эксперимент должен быть в максимально возможной степени информативным, удовлетворять ограничениям, обеспечивать получение данных с необходимой точностью и достоверностью. Существует теория планирования эксперимента, нужные нам элементы этой теории мы изучим в соответствующем месте дисциплины. GPSS World, AnyLogic и др.) и могут применяться автоматически. Не исключено, что в ходе анализа полученных результатов модель может быть уточнена, дополнена или даже полностью пересмотрена.

После анализа результатов моделирования осуществляется их интерпретация , то есть перевод результатов в термины предметной области . Это необходимо, так как обычно специалист предметной области (тот, кому нужны результаты исследований) не обладает терминологией математики и моделирования и может выполнять свои задачи, оперируя лишь хорошо знакомыми ему понятиями.

На этом рассмотрение последовательности моделирования закончим, сделав весьма важный вывод о необходимости документирования результатов каждого этапа. Это необходимо в силу следующих причин.

Во-первых, моделирование процесс итеративный, то есть с каждого этапа может осуществляться возврат на любой из предыдущих этапов для уточнения информации, необходимой на этом этапе, а документация может сохранить результаты, полученные на предыдущей итерации.

Во-вторых, в случае исследования сложной системы в нем участвуют большие коллективы разработчиков, причем различные этапы выполняются различными коллективами. Поэтому результаты, полученные на каждом этапе, должны быть переносимы на последующие этапы, то есть иметь унифицированную форму представления и понятное другим заинтересованным специалистам содержание.

В-третьих, результат каждого из этапов должен являться самоценным продуктом. Например, концептуальная модель может и не использоваться для дальнейшего преобразования в математическую модель, а являться описанием, хранящим информацию о системе, которое может использоваться как архив , в качестве средства обучения и т. д.



Загрузка...