sonyps4.ru

Acpi configuration в биосе. Что такое ACPI? Основные цели разработки

Пользование портативным компьютером

Режим частичной остановки

В режимах энергосбережения и “сна” генератор тактовых импульсов процессора выключен и большая
часть устройств компьютера переведена в режим минимальной активности. Режим частичной остановки
- это режим минимального потребления энергии компьютером. Компьютер переходит в этот режим, когда
система простаивает определенное количество времени или после нажатия клавиш . Когда компьютер
находится в режиме STR, индикатор питания мигает. Когда компьютер находится в режиме STD, индикатор
питания не горит. Выход из режима STR осуществляется нажатием любой клавиши на клавиатуре
за исключением Fn. Выход из режима STD осуществляется выключателем питания, так же, как и
включение компьютера.

Экономия энергии

Помимо отключения генератора тактовых импульсов процессора, этот режим переводит устройства
компьютера, в том числе подсветку монитора, в состояние минимальной активности. Компьютер переходит в
режим энергосбережения (низкая приоритетность), когда система простаивает определенное время. Временной
промежуток устанавливается через соответствующий пункт (Электропитание) операционной системы
Windows (высокая приоритетность). Для восстановления работы системы, нажмите любую клавишу.

Режимы управления питанием

Портативный компьютер обладает несколькими автоматическими настраиваемыми функциями экономии
электроэнергии, предназначенными для максимального продления срока службы аккумулятора и снижения
эксплуатационных расходов пользователя(TCO). Часть этих функций настраивается через меню Питание в
программе настройки BIOS. Настройка управления питанием ACPI производится из операционной системы.
Функции управления питанием рассчитаны на максимально возможную экономию электроэнергии за счет
перевода компонентов в режим пониженного энергопотребления так часто, как только возможно, но при этом
позволяют при необходимости работать при полном питании. Эти режимы пониженного энергопотребления
называются Режим энергосбережения (или Suspend-to-RAM) и Режим “сна” или Suspend-to-Disk (STD).
Функция режима энергосбережения осуществляется операционной системой. Когда компьютер находится в
одном из режимов пониженного энергопотребления, его состояние определется следующим образом: в режиме
энергосбережения индикатор питания мигает, в режиме “сна” индикатор питания не горит.

Режим полного питания и максимальной производительности

Портативный компьютер работает в режиме полного питания, когда функция управления питанием отключена
в настройках управления питанием Windows и Speedstep (см. Руководство по установке драйверов и утилит).
Когда компьютер работает в режиме полного питания, индикатор питания горит. Если вас беспокоит как
производительность системы, так и энергопотребление, не отключайте все функции управления питанием, а
выберите функцию “Максимальная производительность”.

Система конфигурации и управления питанием ACPI была разработана компаниями Intel, Microsoft и Toshiba
специально для управления питанием и функциями Plug and Play в системе Windows. ACPI представляет
собой новый стандарт управления питанием для портативных компьютеров. Система ACPI устанавливается
автоматически при установке Windows 98 с BIOS от 12/1/1999 или позже.

ПРИМЕЧАНИЕ: В более старых операционных системах, таких как Windows NT4 и Windows 98, использовалась
система АРМ. Поскольку более новые операционные системы, такие, как Windows XP и Windows 2000 и
Windows ME используют систему ACPI, система APM поддерживается этим портативным компьютером не
полностью.

Настройки управления энергопотреблением в BIOS (Power Management Settings)

Данная статья Вам поможет снизить количество потребление электричества ноутбуком, нетбуком и стационарным компьютером (обычный ПК или системник).

Прошу заметить обладателей ноутбуков и нетбуков, эта статья как раз для Вас. Отключив определенные функции можно продлить время работы Вашего аппарата на час и более.

И так приступим разбору настроек энергопотребления в BIOS SETUP. В частности для настройки вкладка в BIOS называется "Power Management Settings ".

На картинке снизу Вы увидите вкладку "Power Management Settings " работающий чип на микрокоде Phoenix/Award.

В этой сфере BIOS у пользователей часто наблюдается путаница. Если не выставлены правильные настройки, то система перестанет выключаться должным образом, а также не будет правильно выходить из состояний Standby или Hibernate. Windows уже оснащена встроенным управлением энергопотреблением, все соответствующие опции в BIOS можно выключить. Иначе они будут конфликтовать друг с другом, и ни одна не будет работать правильно. Производители материнских плат понимают, что Windows используют не все, поэтому большинство настроек предназначено для пользователей других ОС.

И так перейдем к разбору основных опций в вкладке " Power Management Settings".

ACPI Suspend to RAM: ACPI означает усовершенствованный интерфейс управления конфигурированием и энергопотреблением (Advanced Configuration and Power Interface) — не путайте его с APIC или IPCA, которые тоже присутствуют в качестве опций в некоторых BIOS. Функция Suspend to RAM, которую также называют S3/STR, позволяет компьютеру экономить больше энергии в режиме ожидания (Standby), однако все устройства, подключённые к компьютеру, должны быть ACPI-совместимы. У некоторых BIOS для этого сценария существует опция S1/ POS. Если вы включите эту функцию и у вас появятся проблемы с режимом ожидания, то вернитесь в BIOS и выключите её.

Video Off Method (способ выключения видео): DPMS расшифровывается как управление режимом энергосбережения монитора (Display Power Management System). Эта опция позволяет BIOS управлять графической картой, поддерживающей функцию DPMS. Опция чёрный экран (Blank Screen) выдаёт пустой чёрный экран — её следует использовать для тех мониторов, которые не поддерживают зелёные опции или режим сбережения энергии. Опция V/H SYNC Blank не только выдаёт чёрный экран, но и выключает вертикальное и горизонтальное сканирование. Если ваш компьютер и монитор выпущены в последние лет пять, то мы рекомендуем опцию DPMS.

HDD Down In Suspend (выключение HDD в режиме Suspend): функция определяет, будет ли автоматически выключаться жёсткий диск в режиме Suspend. Большинство подобных настроек управляются Windows, но если ваш жёсткий диск не выключается, когда компьютер входит в режим сна Suspend, то включите эту опцию. Иначе лучше оставить её выключенной (Disabled).

PWR Button < 4 Secs (клавиша питания): по умолчанию все ATX-компьютеры выключаются, если удерживать клавишу питания больше четырёх секунд. Эта настройка говорит компьютеру, что следует делать, если клавишу питания будут удерживать меньше четырёх секунд. Можно как выключить систему, так и перевести её в режим Suspend. Так что решайте сами.

Power Up On PCI Device (включение по устройству PCI): если вы используете Wake-On-LAN — эта опция часто применяется в больших офисных окружениях для удалённого включения компьютеров — то оставьте опцию включённой (Enabled). Иначе мы рекомендуем выключить эту опцию (Disabled).

Wake/Power Up on Ext. Modem (включение по внешнему модему): эта функция позволяет компьютеру автоматически включаться при активации телефонной линии модема. Опять же, удобная функция для удалённого управления. В других окружениях, то есть для большинства пользователей, её лучше выключить (Disabled).

Automatic Power Up (автоматическое включение): эта функция позволяет установить время, когда ваш компьютер будет автоматически включаться. Если вам нужна подобная функция, то включите её (Enabled). В противном случае выключите (Disabled).

AC Power Loss Restart (включение после потери питания): эта опция говорит компьютеру, что ему следует делать после неожиданной потери питания и его восстановления. Если опция выключена (Disabled), то система не будет запущена. Если включена (Enabled) — то система будет перезагружена. Мы рекомендуем выключить эту опцию (Disabled).

Power On By PS/2 Mouse (включение по мыши PS/2): если опция включена, то для включения ПК может использоваться мышь PS/2 (не USB). Выключите (Disabled) эту опцию, чтобы не включать компьютер, случайно затронув мышь.

Power On By PS/2 Keyboard (включение по клавиатуре PS/2): при активации этой функции с помощью специальных клавиш можно включать систему. Лучше выключить функцию (Disabled), чтобы не ошибиться случайно клавишей.

Внимание: Если у Вас стоит на ноутбуке операционная система Windows надо в BIOS SETUP отключить все опции в разделе "Power Management Settings".

ГОСТом предусмотрено 10 номинальных режимов для электродвигателей, которые обозначаются как S 1- S 10, их описание приведено ниже.

S 1 - продолжительный режим работы электродвигателя , характеризуется работой электродвигателя при постоянной нагрузке (Р) и потерях (Р V) на протяжении длительного времени, пока все части машины не достигнут неизменной температуры (Ɵ max = Ɵ нагр).

На выше приведенном рисунке Ɵ 0 - температура внешней среды.

S 2 - кратковременный режим работы электродвигателя - это работа электродвигателя на протяжении небольшого отрезка времени (Δ t p) при постоянной нагрузке (P). При работе за определенное время (Δ t p) составляющие двигателя не успевают нагреваться до установившейся температуры (Ɵ max), после этого машину останавливают и она охлаждается до температуры внешней среды (превышая не более чем на 2 0 С).

S 3 - периодический повторно-кратковременный режим работы электродвигателя , представляет собой последовательность одинаковых циклов, работа в которых происходит при постоянной, неизменной нагрузке. За это время электродвигатель не успевает нагреться до максимальной температуры и при останове не охлаждается до температуры окружающей среды. Не учитываются потери, возникшие при запуске двигателя (пусковой ток не оказывает большого влияния), то есть они не нагревают детали машины. Длительность цикла не превышает десяти минут.

Где Δ t p - время работы двигателя; Δ t R - время простоя, охлаждения; Ɵ нагр1 - температура двигателя при максимальном охлаждении во время цикла; Ɵ нагр2 - максимальная температура нагрева.

Продолжительность включения (ПВ) характеризует данный режим работы и находится по формуле:

Существуют нормированные значения ПВ: 60%, 40%, 25%, 15%.

Указанные в каталогах мощности приводятся для «Продолжительного режима работы (S 1)». Если же двигатель будет работать в других режимах, к примеру, S 2 или S 3, то нагревание его будет происходить медленнее, что позволит увеличить нагрузку на некоторое время. Для режима S 2 допускается увеличение нагрузки на 50% на период времени 10 минут, 25% - 30 минут, 10% - 90 минут. Для работы механизма в режиме S 3 лучше всего применять приводной асинхронный двигатель с повышенным скольжением.

S 1 - S 3 являются основными режимами работы, а S 4 - S 10 были введены для расширения возможностей первых, и предоставления более широкого ряда электродвигателей под конкретные задачи.

S 4 - повторно-кратковременный режим работы электродвигателя с влиянием пусковых процессов , представляется в виде циклической последовательности, в каждом цикле выполняется пуск двигателя за время (Δ t d), работа двигателя при постоянной нагрузке в течении (Δ t p), за эти промежутки времени машина не успевает достичь максимальной температуры (установившейся), а за время паузы (Δ t R) не остывает до внешней среды.

S 5 - Повторно-кратковременный режим работы электродвигателя с электрическим торможением и влиянием пусковых процессов включает в себя те же характерности режима, что и S 4, с осуществлением торможения электродвигателя за время (Δ t F).

Этот режим работы характерен для электропривода лифтов.

S 6 - перемежающийся режим работы электродвигателя - последовательность циклов , при которой работа происходит в течении времени (Δ t р) с нагрузкой, и время (Δ t V) работает на холостом ходу. Двигатель не нагревается до предельной температуры.

S 7 - Перемежающийся режим работы электродвигателя с влиянием пусковых токов и электрическим торможением , особенностью является отсутствие пауз в работе, что обеспечивает 100% периодичность включения. Описывается работа в данном режиме последовательными циклами с достаточно долгим пуском (Δ t d), нормальной работой при неизменной нагрузке и торможением двигателя.

. Так же как и предыдущий режим, этот не содержит пауз, соответственно ПВ=100%. Реализация данного S 8 режима происходит в асинхронных двигателях при переключении пар полюсов . Каждый последовательный цикл состоит из времени разгона (Δ t d), работы (Δ t р) и торможения (Δ t F), но при разных нагрузках, а соответственно при разных скоростях вращения ротора (n).

. Режим, при котором обычно нагрузка и частота вращения изменяются непериодически в допустимом рабочем диапазоне. Этот режим часто включает в себя перегрузки, которые могут значительно превышать базовую нагрузку Для этого типа режима постоянная нагрузка, выбранная соответствующим образом и основанная на типовом режиме S1, берется как базовая (см. рисунок ниже) для определения перегрузки.

Режим, состоящий из ограниченного числа дискретных нагрузок (или эквивалентных нагрузок) и, если возможно, частот вращения, при этом каждая комбинация нагрузки/частоты вращения сохраняется достаточное время для того, чтобы машина достигла практически установившегося теплового состояния (рисунок ниже). Минимальная нагрузка в течение рабочего цикла может иметь и нулевое значение (холостой ход, покой или бестоковое состояние). Для этого типового режима постоянная нагрузка, выбранная в соответствии с типовым режимом S1, принимается за базовую для дискретных нагрузок. Дискретные нагрузки являются, как правило, эквивалентной нагрузкой, интегрированной за определенный период времени. Нет необходимости, чтобы каждый цикл нагрузки точно повторял предыдущий, однако каждая нагрузка внутри цикла должна поддерживаться достаточное время для достижения установившегося теплового состояния, и каждый нагрузочный цикл должен интегрированно давать ту же вероятность относительного ожидаемого термического срока службы изоляции машины.

Длительность рабочего цикла, характер действующей нагрузки, ее величина, потери при пуске, торможении и во время установившегося режима работы, способ охлаждения - все эти параметры описывают режимы работы электродвигателей. Возможные комбинации выше приведенных характеристик имеют огромное разнообразие и потому изготовление двигателей для каждого из них не целесообразно. По наиболее часто использованным и востребованным характерам работы были выделены номинальные режимы, для которых собственно и изготовляются серийные электродвигатели. Параметры электрической машины, которые указаны в паспорте, характеризуют ее работу в одном из номинальных режимов. Изготовитель гарантирует нормальную, безотказную работу эл. двигателя в номинальном режиме при номинальной нагрузке. Необходимо обязательно учитывать режим работы электропривода при выборе двигателя, это обеспечит надежную работу механизма.

ACPI Standby State

Возможные значения:

S1/POS , S3/STR
или
S1(POS) , S3(STR)
или
S1&S3 , S1(POS) , S3(STR)
или
Auto , S1/POS , S3/STR

Описание:

Опция позволяет указать, какой из режимов будет использоваться при переходе в состояние энергосбережения: S1(POS) (в некоторых версиях BIOS значение выглядит как S1(PowerOn-Suspend) ) или S3(STR) (в некоторых версиях BIOSS3(Suspend-To-RAM) ). Если ваша материнская плата и блок питания совместимы со вторым режимом, выбирайте его, как более экономичный. Иногда присутствует и вариант S1&S3 , в этом случае операционной системой могут быть использованы оба режима энергосбережения.

Кратко остановимся на этих режимах. Большинство компьютеров, поддерживающих спецификации ACPI, позволяют использовать два режима энергосбережения: S1 (POS) и S3 (STR). В первом (расшифровывается как Power on Suspend) отключается питание от жесткого диска, некоторых карт расширения, плюс, гасится монитор. Все остальные компоненты (процессор, оперативная память, чипсет…) работают в штатном режиме, возможен только переход на пониженные частоты. Благодаря этому пробуждение происходит очень быстро. Второй режим (сокращение от Suspend to RAM) характеризуется гораздо меньшим энергопотреблением. Перед переходом в него вся информация о состоянии различных компонентов сохраняется в оперативной памяти, после чего все остальные устройства отключаются, остается только дежурное питание. Расплачиваться за это приходится более долгим пробуждением компьютера. Есть еще Hibernate или Suspend to Disk, но он не относится к режимам энергосбережения. При его использовании информация о состоянии различных компонентов «сбрасывается» на жесткий диск, после чего происходит обычное отключение питания.

Для того чтобы режим Suspend to RAM (как, впрочем, и Suspend to Disk) функционировал без сбоев, необходимо четкое взаимодействие всех драйверов компонентов, установленных в системе. При наличии «кривого» драйвера компьютер может не просыпаться вообще или после выхода из спящего режима работать с ошибками. В этом случае необходимо вернуться к менее требовательному в этом плане Power on Suspend.

Режим Suspend to RAM накладывает определенные ограничения на блок питания: ток, отдаваемый по цепи Standby (+5V SB), должен быть не менее 800 мА (рекомендуется 1 А). К современным моделям претензий в этом плане нет — все они совместимы с режимом Suspend to RAM, проблемы могут возникнуть только со старыми компьютерами.

Кто-то видел его в статьях про NT-системы, кто-то в Диспетчере устройств, а кто-то еще где-нибудь. Однако далеко не все хорошо знают, что это такое. Обычное определение вроде "ACPI - это менеджер питания" слишком поверхностно отражает суть этой системной архитектуры. Между прочим, с приходом ACPI в индустрию канули в лету "разборки" между BIOS"ом и операционкой, появился спящий режим и еще куча полезных функций, о которых раньше можно было только мечтать. Конечно, на полноту изложения данный материал не претендует, но ответ на вопрос, вынесенный в заголовок, дает. Итак, что же такое ACPI?

История

Промышленный стандарт управления питанием компьютера и его устройствами с помощью ОС был необходим технологии как воздух, ведь постоянные конфликты операционной системы и оборудования мешали разработке и того, и другого. BIOS никак не мог угодить операционке, она - ему. Каждый хотел конфигурировать устройства по-своему. Представляете, что бы было, если бы не существовал ACPI при нынешнем многообразии различных девайсов? Даже подумать страшно. Вот поэтому ведущими IT-компаниями было принято решение отделить "софт от харда" и разработать системную архитектуру, которая брала бы на себя всю тяжесть общения с BIOS"ом. Заодно разработчики не забыли об энергопотреблении, поэтому ACPI еще должен был управлять питанием. 1 декабря 1996 года консорциум, состоящий из Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd. и Toshiba Corporation, объявил о завершении работы над новым стандартом - ACPI, что расшифровывается как Advanced Configuration and Power Interface, или расширенный интерфейс конфигурирования и управления питанием компьютера. ACPI состоял из множества составляющих, главной из которых был специальный участок кода BIOS, обеспечивающий поддержку компьютером новой архитектуры. То есть со старым оборудованием новый стандарт был несовместим.

Разумеется, это повлекло за собой обновление парка компьютеров. Как это обычно делается, мы с вами, уважаемые читатели, очень хорошо знаем. За примером даже ходить далеко не надо - достаточно вспомнить историю с PCI-E. Правда, парк компьютеров еще не полностью обновился, ведь апгрейд обходится достаточно дорого. Но, как ни крути, плата без PCI-E уже считается устаревшей. С ACPI было точно так же, только польза от него не так сомнительна. Скорее даже наоборот, ведь вместе с ACPI пришел APIC, а это значит, что одно прерывание теперь могло использоваться несколькими устройствами! Для того времени это была настоящая сенсация. Первым процессором с поддержкой ACPI можно считать самый ранний Celeron, однако поддержка нового интерфейса была реализована настолько криво, что эту функцию приходилось отключать. Важно также отметить, что ACPI окончательно вытеснил Plug and Play и, по словам создателей, "обеспечил использование существующих интерфейсных разъемов более безопасным и потенциально более эффективным способом". Помимо участка кода BIOS, в состав ACPI также входила улучшенная схема управления питанием (Advanced Power Management), прикладной программный интерфейс (API), специальный машинный язык (ACPI Machine Language) и еще некоторые полезные вещи. Появился новый термин - OS Power Management, где ACPI, разумеется, отводилась главная роль.

Основные цели разработки

1. Компьютерная система должна выполнять конфигурирование устройств программными средствами. Управление питанием должно быть более
функциональным и безопасным.
2. Использование ПК должно стать более экономичным.
3. Разработчики оборудования имеют максимальную свободу при проектировании готовых систем: от самых легких решений до самых экстремальных при полной поддержке ОС.
4. Политика управления питанием слишком сложна для реализации в ROM BIOS, поэтому должна осуществляться исключительно самой ОС.
5. Унификация всех алгоритмов питания в единый стандарт ACPI позволит избавиться от конфликтов операционной системы и BIOS"а в вопросах конфигурирования устройств.
6. ОС развивается независимо от аппаратного обеспечения, поэтому на всех ACPI-совместимых машинах можно будет добиться увеличения
производительности и стабильности за счет смены операционной системы.
Нужно сказать, что разработчики своих целей достигли. Стоит рассмотреть структуру работы ACPI подробно.

Структура ACPI

Чтобы понять, как работает та или иная технология, необходим хороший пример. В технической документации разработчики пишут следующее: "Предположим, что ОС имеет политику разделения всех запросов ввода/вывода на ленивых и неленивых. Ленивые запросы (редактирование текста или электронных таблиц) объединяются в группы и исполняются устройством только тогда, когда оно начинает работать по какой-либо _другой_ причине. Неленивые операции заставляют устройство работать при первой же отправке запроса". Для ОС важно различать, какие операции являются ленивыми, а какие - нет. Кроме того, система должна знать состояние всех своих устройств, ведь выключенный девайс никогда ничего делать не станет. Все это обеспечивает ACPI. В то время, когда какая-то железка простаивает без дела, ACPI-драйвер снижает ей мощность питания и вместе с этим уменьшает общее энергопотребление работающей системы. Представьте, что в вашем системном блоке установлен автоответчик. Его задача - отвечать на входящие звонки. Разумеется, вам звонят не постоянно, поэтому большую часть времени автоответчик совершенно ничего не делает, зря потребляя драгоценную электроэнергию. Это очень нерационально. Поэтому ACPI создает девайсу специальную политику поведения, согласно которой он входит в состояние глубокого сна, однако при входящем звонке устройство проснется в течение одной секунды и ответит на вызов. Разумеется, есть одно но: автоответчик обязательно должен быть ACPI-совместимым.

Как было сказано выше, появилось новое состояние оборудования - спящий режим. Состояние всех устройств сохраняется на жесткий диск, а затем может быть восстановлено при следующей загрузке операционной системы. Преимущества спящего режима очевидны. Это быстрый старт системы, возможность продолжения работы с того места, где остановился в прошлый раз, практически моментальное выключение. К минусам можно отнести лишь обязательное наличие файла hiberfil.sys размером с оперативку и остающиеся в памяти невыгруженные dll"ки, которые со временем тормозят работу. Тем не менее, эта фича хорошо прижилась в народе, и многие ею пользуются. Производители корпусов стали даже выпускать модели с двумя кнопками: включение/выключение и спящий режим. Отныне любая кнопка на системном блоке (кроме Reset, конечно) являются программируемой - ACPI позволяет переопределять их. Откройте апплет Электропитание в Панели управления, вкладка Дополнительно. Видите, здесь можно переназначить действия кнопок на вашем корпусе. Благодаря возможностям ACPI мы можем отправлять компьютер в спящий режим по нажатию кнопки Power на системном блоке (если системный блок ATX - впрочем, AT уже можно найти только в музее). ..\Электропитание.jpg. ..\ACPI.jpg Все устройства подключаются к виртуальной ACPI-шине, хотя реальный ввод/вывод идет через обычные интерфейсы (IDE, AGP и т.д.). В этом можно убедиться, если в Диспетчере устройств в меню Вид выбрать пункт Устройства по подключению. Сначала Windows загружает ACPI-драйвер, опрашивающий ACPI-контроллер на предмет подключенных к нему устройств, главным из которых является PCI-шина. Затем выявляются подключенные платы расширения, и процесс повторяется до тех пор, пока не будут определены все шины и подключенные к ним устройства. ..\Device.jpg ACPI состоит из трех компонентов: ACPI-регистры, ACPI BIOS и ACPI-таблица.

ACPI-таблица. ACPI-таблица описывает интерфейсы аппаратных средств. Некоторые из этих описаний могут ограничивать использование устройством каких-либо функций, но большинство из них позволяют устройствам выполнять произвольные последовательности операций. ACPI-таблица содержит так называемые блоки определения (Definition Blocks), которые могут быть запрограммированы из-под ОС. Другими словами, ACPI использует встроенный интерпретатор псевдокода, называемый ACPI Machine Language (AML). AML исполняет код, содержащийся в блоках определения.
ACPI-регистры. Здесь содержится ограниченная часть описания интерфейсов из ACPI-таблиц для быстрого доступа к таким данным.
ACPI BIOS. Это часть кода BIOS, которая совместима с ACPI-спецификациями. Как правило, это код, отвечающий за загрузку, засыпание/пробуждение и перезагрузку машины. ACPI-таблицы также обеспечиваются за счет ACPI BIOS.

ACPI и железо

Специальная таблица описывает поведение обычных и ACPI-совместимых программных и аппаратных средств.

Выводы и заключение

1. Концепция ACPI одинакова для всех типов компьютеров включая десктопы, лэптопы, КПК, мобильные телефоны, рабочие станции и серверы.

2. Новая системная архитектура является достаточно переносимой - как между различными ОС, так и между процессорами.

3. Внедрение ACPI в ОС позволило несколько упростить (и удешевить) разработку кода BIOS, исключив из него примитивные энергоуправляющие функции.

4. Появление этой архитектуры значительно увеличило стабильность работы операционных систем и повысило безопасность использования оборудования.

5. Существование столь большого парка мобильных компьютеров вряд ли было бы возможным без ACPI. Динамическое управление питанием отлично экономит батарею.

Если подвести итог всему вышесказанному, ACPI, безусловно, является новым витком в технологии. Мы рассмотрели основные принципы его работы. За кадром остались неинтересные технические подробности, в которых при желании вы разберетесь сами. Скачать полный мануал (на английском языке) по ACPI можно с сайта www.acpi.info При подготовке данного материала использовалась некоторая информация с этого сайта. Всего доброго, и до скорых встреч!

Алексей Голованов



Загрузка...